Understanding the impact of temperate bacteriophages on their lysogens through transcriptomics

Abstract

SUMMARY: This protocol enables the impact of prophages on their hosts to be revealed. Bacterial cultures are synchronized using conditions that best support the lysogenic state, limiting spontaneous induction. RT-qPCR unequivocally distinguishes prophage-restricted genes and those uncoupled from phage control from those that are expressed during the lytic replication cycle. ABSTRACT: Temperate phages are found integrated as prophages in the majority of bacterial genomes. Some prophages are cryptic and fixed in the bacterial chromosome, but others are active and can be triggered into a replicative form either spontaneously or by exposure to inducing factors. Prophages are commonly associated with the ability to confer toxin production or other virulence-associated traits on their host cell. More recent studies have shown they can play a much bigger role in altering the physiology of their hosts. The technique described here has enabled us to investigate how prophages affect gene expression in the opportunistic bacterium Pseudomonas aeruginosa.In this protocol, a portion of bacterial cells within a lysogenic culture is made to undergo lytic replication (spontaneous induction) with a high level of expression per cell of late phage genes, such as those associated with the assembly of phage particles, thus masking the low-level gene expression associated with lysogen-restricted gene expression. In this work, the growth of the wild-type P. aeruginosa strain PAO1 was compared with that of isogenic lysogens carrying different combinations of prophages from the Liverpool Epidemic Strain (LES) LESB58

    Similar works