800 research outputs found

    Trends in Bacterial Pathogens of Bats:Global Distribution and Knowledge Gaps

    Get PDF
    Bats have received considerable recent attention for infectious disease research because of their potential to host and transmit viruses, including Ebola, Hendra, Nipah, and multiple coronaviruses. These pathogens are occasionally transmitted from bats to wildlife, livestock, and to humans, directly or through other bridging (intermediate) hosts. Due to their public health relevance, zoonotic viruses are a primary focus of research attention. In contrast, other emerging pathogens of bats, such as bacteria, are vastly understudied despite their ubiquity and diversity. Here, we describe the currently known host ranges and geographic distributional patterns of potentially zoonotic bacterial genera in bats, using published presence-absence data of pathogen occurrence. We identify apparent gaps in our understanding of the distribution of these pathogens on a global scale. The most frequently detected bacterial genera in bats are Bartonella, Leptospira, and Mycoplasma. However, a wide variety of other potentially zoonotic bacterial genera are also occasionally found in bats, such as Anaplasma, Brucella, Borrelia, Coxiella, Ehrlichia, Francisella, Neorickettsia, and Rickettsia. The bat families Phyllostomidae, Vespertilionidae, and Pteropodidae are most frequently reported as hosts of bacterial pathogens; however, the presence of at least one bacterial genus was confirmed in all 15 bat families tested. On a spatial scale, molecular diagnostics of samples from 58 countries and four overseas departments and island states (French Guiana, Mayotte, New Caledonia, and Réunion Island) reported testing for at least one bacterial pathogen in bats. We also identified geographical areas that have been mostly neglected during bacterial pathogen research in bats, such as the Afrotropical region and Southern Asia. Current knowledge on the distribution of potentially zoonotic bacterial genera in bats is strongly biased by research effort towards certain taxonomic groups and geographic regions. Identifying these biases can guide future surveillance efforts, contributing to a better understanding of the ecoepidemiology of zoonotic pathogens in bats.<br/

    Adapted Tricycle

    Get PDF
    This Final Design Review document describes the senior design project carried out by a team of four mechanical engineering students from California Polytechnic State University, San Luis Obispo in conjunction with California Children’s Services for Savannah, a student at San Luis Obispo High School. The purpose of the project is to design an adaptive vehicle for Savannah that serves as a form of exercise and can be easily operated by her with little to no outside assistance. Background into Savannah’s condition is provided as well as previous designs of similar adaptive tricycles, document standards and specifications which constrain design solutions, outline the scope of the project as well as the needs and wants of the end user as understood by the team, and develop a path towards the final design through description of the design process. The final design described in this document is centered around the user’s strongest muscle group (her abdomen and back muscles) to provide all necessary tricycle functions. These functions include steering, powering and braking. In general, the steering mechanism will utilize bevel gears to actuate the front wheel of the tricycle, the powering system will be a ratcheting push bar that is harnessed to the user’s torso, and the braking system will be a brake pad on the front wheel that is engaged by leaning back in the seat. This document contains our team’s process for developing our final design, solid model of our final design, justification calculations, manufacturing plans and engineering drawings, and our schedule for completion of the final product. In addition, a summary of the effects of the COVID-19 pandemic on project completion is provided, including an outline of future documentation which will aid an outside party in development and completion of our intended design, as well as the team’s revised project direction and scope

    Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species

    Get PDF
    White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiating P. destructans from closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific to P. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifying P. destructans, other Pseudogymnoascus spp., and Geomyces spp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi

    Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Castor bean (<it>Ricinus communis</it>) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of <it>R. communis </it>in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci.</p> <p>Results</p> <p>Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74%) followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕ<sub>PT </sub>values, <it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.</p

    Draft genome sequences of two Bulgarian Bacillus anthracis strains

    Get PDF
    Bacillus anthracis strains previously isolated from Bulgaria form a unique subcluster within the A1.a cluster that is typical for isolates from southeastern Europe. Here, we report the draft genome sequences of two Bulgarian B. anthracis strains belonging to the A branch (A.Br.) 008/009 canonical single nucleotide polymorphism (SNP) group of the major A branch

    First isolation and characterization of Brucella microti from wild boar

    Get PDF
    Background: Brucella microti was first isolated from common vole ( Microtus arvalis ) in the Czech Republic in Central Europe in 2007. As B. microti is the only Brucella species known to live in soil, its distribution, ecology, zoonotic potential, and genomic organization is of particular interest. The present paper is the first to report the isolation of B. microti from a wild boar ( Sus scrofa ), which is also the first isolation of this bacterial species in Hungary. Results: The B. microti isolate was cultured, after enrichment in Brucella -selective broth, from the submandibular lymph node of a female wild boar that was taken by hunters in Hungary near the Austrian border in September 2014. Histological and immunohistological examinations of the lymph node sections with B. abortus- , B. suis- and B. canis -specific sera gave negative results. The isolate did not require CO 2 for growth, was oxidase, catalase, and urease positive, H 2 S negative, grew well in the presence of 20 μ g/ml basic fuchsin and thionin, and had brownish pigmentation after three days of incubation. It gave strong positive agglutination with anti-A and anti-M but had a negative reaction with anti-R monospecific sera. The API 20 NE test identified it as Ochrobactrum anthropi with 99.9 % identity, and it showed B. microti -specific banding pattern in the Bruce- and Suis-ladder multiplex PCR systems. Whole genome re-sequencing id entified 30 SNPs in orthologous loci when compared to the B. microti reference genome available in GenBank, and the ML VA analysis yielded a unique profile. Conclusions: Given that the female wild boar did not develop any clinical disease, we hypothesize that this host species only harboured the bacterium, serving as a possible reservoir capable of maintaining and spreading this pathogen. The infectious source could have been either a rodent, a carcass that had been eaten or infection occurred via the boar rooting in soil. The low number of discovered SNPs suggests an unexpectedly high level of genetic homogeneity in this Brucella species. Keywords: Biochemistry, Brucella microti , Immunohistochemistry, MLVA, Morphology, Wild boar, Whole genome sequencing, Hungary

    Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    Get PDF
    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations

    Whole-genome sequencing of Burkholderia pseudomallei isolates from an unusual melioidosis case identifies a polyclonal infection with the same multilocus sequence type

    Get PDF
    Twelve Burkholderia pseudomallei isolates collected over a 32-month period from a patient with chronic melioidosis demonstrated identical multilocus sequence types (STs). However, whole-genome sequencing suggests a polyclonal infection. This study is the first to report a mixed infection with the same ST

    Genetic Variability of the European Corn Borer, Ostrinia nubilalis, Suggests Gene Flow Between Populations in the Midwestern United States

    Get PDF
    The European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), is a widely distributed and serious economic pest to corn production in the U.S. Genetic variability of O. nubilalis was studied in 18 sub-populations in the upper Midwestern United States using amplified fragment length polymorphism. The relatively low GST values indicate that more variation exists within populations than between populations. High gene flow (Nm) values were indicated across the entire O. nubilalis population; the lowest degree of gene flow was in the northern samples (Nm = 1.96) and the highest degree of gene flow was in the southern samples (Nm = 2.77). The differences observed in the respective regions (north vs. south) may be explained by the voltinism patterns (univoltine vs. multivoltine, respectively) of O. nubilalis: southern multivoltine populations have opportunities for multiple matings for the duration of the year, further mix alleles. AMOVA results also indicated that most of the genetic variation was within sub-populations (≈ 81% of total variation); less variation (≈ 13%) was detected among populations within each of the three regions as designated for this study. However, the most striking and unexpected result was the low percentage of variation between all groups (≈ 6%), further supporting implications of a high degree of gene flow. These results provide support for current requirements of refugia corn planting in Bt-corn management. These results also indicate that if resistance to Bt were to evolve in O. nubilalis, quick action would be necessary to deter the rapid spread of the gene for resistance
    corecore