24,075 research outputs found
Determination of Frequency and Distribution of Hessian Fly (Diptera: Cecidomyiidae) Biotypes in the Northeastern Soft Wheat Region
Fifteen collections of Hessian flies from the northern soft winter wheat region of the United States were used to determine the composition and frequency of biotypes. The wheat cultivars \u27Seneca\u27 (H7Hs), \u27Monon\u27 (H3), \u27Knox 62\u27 (~, H7Hg), and \u27Abe\u27 (Hs) were used as differentials. Biotypes J and L replaced biotype B as the prevalent biotype in Indiana, since wheat cultivars having the Hs and the H6 genes have been grown. Biotype GP, the least virulent of any Hessian fly biotypes, was still present in New York indicating that wheat cuItivars with no genes for resistance are still being grown there. The genetic variability of Hessian fly biotypes that enables them to overcome the resistance in wheat cultivars is discussed
Toxicity of thermal degradation products of spacecraft materials
Three polymeric materials were evaluated for relative toxicity of their pyrolysis products to rats by inhalation: Y-7683 (LS 200), Y-7684 (Vonar 3 on Fiberglass), and Y-7685 (Vonar 3 on N W Polyester). Criteria employed for assessing relative toxicity were (1) lethality from in-chamber pyrolysis, (2) lethality from an outside-of-chamber pyrolysis MSTL Procedure, and (3) disruption of trained rats' shock-avoidance performance during sub-lethal exposures to in-chamber pyrolysis of the materials
Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations
Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs
An Ammonia Spectral Atlas of Dense Cores in Perseus
We present ammonia observations of 193 dense cores and core candidates in the
Perseus molecular cloud made using the Robert F. Byrd Green Bank Telescope. We
simultaneously observed the NH3(1,1), NH3(2,2), CCS (2_1 -> 1_0) and CC34S (2_1
-> 1_0) transitions near 23 GHz for each of the targets with a spectral
resolution of dv ~ 0.024 km/s. We find ammonia emission associated with nearly
all of the (sub)millimeter sources as well as at several positions with no
associated continuum emission. For each detection, we have measured physical
properties by fitting a simple model to every spectral line simultaneously.
Where appropriate, we have refined the model by accounting for low optical
depths, multiple components along the line of sight and imperfect coupling to
the GBT beam. For the cores in Perseus, we find a typical kinetic temperature
of T=11 K, a typical column density of N(NH3)~ 10^14.5 /cm^2 and velocity
dispersions ranging from sigma_v = 0.07 km/s to 0.7 km/s. However, many cores
with velocity dispersions > 0.2 km/s show evidence for multiple velocity
components along the line of sight.Comment: 19 pages; Accepted to ApJS; version with high resolution figures
available at http://www.cfa.harvard.edu/COMPLETE/papers/nh3-paper1.pdf ;
online data at
http://www.cfa.harvard.edu/COMPLETE/data_html_pages/GBT_NH3.htm
Clustering Phase Transitions and Hysteresis: Pitfalls in Constructing Network Ensembles
Ensembles of networks are used as null models in many applications. However,
simple null models often show much less clustering than their real-world
counterparts. In this paper, we study a model where clustering is enhanced by
means of a fugacity term as in the Strauss (or "triangle") model, but where the
degree sequence is strictly preserved -- thus maintaining the quenched
heterogeneity of nodes found in the original degree sequence. Similar models
had been proposed previously in [R. Milo et al., Science 298, 824 (2002)]. We
find that our model exhibits phase transitions as the fugacity is changed. For
regular graphs (identical degrees for all nodes) with degree k > 2 we find a
single first order transition. For all non-regular networks that we studied
(including Erdos - Renyi and scale-free networks) we find multiple jumps
resembling first order transitions, together with strong hysteresis. The latter
transitions are driven by the sudden emergence of "cluster cores": groups of
highly interconnected nodes with higher than average degrees. To study these
cluster cores visually, we introduce q-clique adjacency plots. We find that
these cluster cores constitute distinct communities which emerge spontaneously
from the triangle generating process. Finally, we point out that cluster cores
produce pitfalls when using the present (and similar) models as null models for
strongly clustered networks, due to the very strong hysteresis which
effectively leads to broken ergodicity on realistic time scales.Comment: 13 pages, 11 figure
Shock-induced prompt relativistic electron acceleration in the inner magnetosphere
Abstract
We present twin Van Allen Probes spacecraft observations of the effects of a solar wind shock impacting the magnetosphere on 8 October 2013. The event provides details both of the accelerating electric fields associated with the shock and the response of inner magnetosphere electron populations across a broad range of energies. During this period, the two Van Allen Probes observed shock effects from the vantage point of the dayside magnetosphere at radial positions of L = 3 and L = 5, at the location where shock-induced acceleration of relativistic electrons occurs. The extended (~1 min) duration of the accelerating electric field across a broad extent of the dayside magnetosphere, coupled with energy-dependent relativistic electron gradient drift velocities, selects a preferred range of energies (3–4 MeV) for the initial enhancement. Those electrons—whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse—stayed in the accelerating wave as it propagated tailward and received the largest increase in energy. Drift resonance with subsequent strong ULF waves further accentuated this range of electron energies. Phase space density and positional considerations permit the identification of the source population of the energized electrons. Observations detail the promptness (\u3c20 min), energy range (1.5–4.5 MeV), energy increase (~500 keV), and spatial extent (L* ~3.5–4.0) of the enhancement of the relativistic electrons. Prompt acceleration by impulsive shock-induced electric fields and subsequent ULF wave processes therefore comprises a significant mechanism for the acceleration of highly relativistic electrons deep inside the outer radiation belt as shown clearly by this event
Dobutamine stress MRI in pulmonary hypertension: relationships between stress pulmonary artery relative area change, RV performance, and 10-year survival
In pulmonary hypertension (PH), right ventricular (RV) performance determines survival. Pulmonary artery (PA) stiffening is an important biomechanical event in PH and also predicts survival based on the PA relative area change (RAC) measured at rest using magnetic resonance imaging (MRI). In this exploratory study, we sought to generate novel hypotheses regarding the influence of stress RAC on PH prognosis and the interaction between PA stiffening, RV performance and survival. Fifteen PH patients underwent dobutamine stress-MRI (ds-MRI) and right heart catheterization. RACREST, RACSTRESS, and ΔRAC (RAC STRESS – RAC REST) were correlated against resting invasive hemodynamics and ds-MRI data regarding RV performance and RV-PA coupling efficiency (n’vv [RV stroke volume/RV end-systolic volume]). The impact of RAC, RV data, and n’vv on ten-year survival were determined using Kaplan–Meier analysis. PH patients with a low ΔRAC (<−2.6%) had a worse long-term survival (log-rank P = 0.045, HR for death = 4.46 [95% CI = 1.08–24.5]) than those with ΔRAC ≥ −2.6%. Given the small sample, these data should be interpreted with caution; however, low ΔRAC was associated with an increase in stress diastolic PA area indicating proximal PA stiffening. Associations of borderline significance were observed between low RACSTRESS and low n’vvSTRESS, Δη’VV, and ΔRVEF. Further studies are required to validate the potential prognostic impact of ΔRAC and the biomechanics potentially connecting low ΔRAC to shorter survival. Such studies may facilitate development of novel PH therapies targeted to the proximal PA
String amplitudes in arbitrary dimensions
We calculate gravitational dressed tachyon correlators in non critcal
dimensions. The 2D gravity part of our theory is constrained to constant
curvature. Then scaling dimensions of gravitational dressed vertex operators
are equal to their bare conformal dimensions. Considering the model as d+2
dimensional critical string we calculate poles of generalized Shapiro-Virasoro
amplitudes.Comment: 14 page
- …