297 research outputs found

    Contribution of polycyclic aromatic hydrocarbon ionization to neutral gas heating in galaxies: model versus observations

    Full text link
    [Abridged] The ionization of polycyclic aromatic hydrocarbons (PAHs), by ultraviolet (UV) photons from massive stars is expected to account for a large fraction of the heating of neutral gas in galaxies. Evaluation of this proposal, however, has been limited by our ability to directly compare observational diagnostics to the results of a molecular model describing PAH ionization. The objective of this article is to take advantage of the most recent values of molecular parameters derived from laboratory experiments and quantum chemical calculations on PAHs and provide a detailed comparison between modeled values and observational diagnostics for the PAH charge state and the heating efficiency for PAHs. Despite the use of a simple analytical model, we obtain a good agreement between model results and observational diagnostics over a wide range of radiation fields and physical conditions, in environments such as star-forming regions, galaxies, and protoplanetary disks. In addition, we found that the modeled photoelectric heating rates by PAHs are close to the observed cooling rates given by the gas emission. These results show that PAH ionization is the main source of neutral gas heating in these environments. The results of our photoelectric heating model by PAHs can thus be used to assess the contribution of UV radiative heating in galaxies (vs shocks, for instance). We provide the empirical formulas fitted to the model results, and the full python code itself, to calculate the heating rates and heating efficiencies for PAHs.Comment: Accepted for publication in Astronomy and Astrophysic

    Melatonin and its derivatives in red wine: contribution of fermenting microorganisms

    Get PDF
    Melatonin (MEL) is an indoleamine produced mainly by the pineal gland in vertebrates and it has a significant role in regulation of circadian rhythm, mitigation of sleeping disorder and jet lag. It has been found in medicinal plants, plant foods including seeds, fruits and fermented beverages, and, therefore, its occurrence in plants is now ascertained. In grapes and wines, MEL ranges from sub-ng/g to \ub5g/g and from sub-ng/mL to ng/mL, respectively, with varying levels according to both endogenous and exogenous factors. In addition, MEL isomers and tryptophan-ethylester (TEE, a compound with the same molecular weight of MEL) have recently been detected in wine and the fermenting yeast plays an important role for their production [1]. It has been suggested that, in synergy with polyphenols, MEL in wine may contribute to maximize the health-promoting effects of Mediterranean diet. The research aimed to validate an analytical method for the simultaneous detection of MEL, TEE and tryptophan. The sample preparation was developed by means of SPE purification. Purified samples of synthetic wine solution (tartaric acid 5 g/L, ethanol 12% [v/v], pH 3.2) and red wine spiked with the analytes of interest were analyzed by liquid chromatography coupled with both fluorescence and mass spectrometry detectors. MEL, TEE and tryptophan were successfully detected and quantified by both the analytical conditions adopted. The response was linear for all the investigated compounds and it was comparable between synthetic wine solution and red wine. The recovery was higher than 85% and the relative standard deviation was lower than 10%. The developed method was applied for the analysis of red wine samples produced in a cold area of North of Italy. Preliminary results showed an increase of TEE concentrations suggesting the possible positive influence of secondary fermentations other than the alcoholic fermentation

    Wine industry’s attitude towards oenological yeasts : Italy as a case study

    Get PDF
    Yeast inoculation is a widespread practice in winemaking in order to control the must fermentation. However, the use of indigenous wine yeasts can enrich wine quality and differentiate wine styles. Yeast cream preparation (CRY), recently accepted by the International Organization of Vine and Wine, could allow an easier usage of autochthonous yeasts. This work aimed at investigating the actual Italian wine industry\u2019s attitude towards the available formulations of commercial wine yeasts with attention to CRY. Moreover, this study evaluated the perception of wineries toward indigenous yeasts in both winemaking and marketing viewpoints. Data show different levels of knowledge and use about the available yeast formulations. In general, there is not a predominantly positive or negative participants\u2019 opinion regarding the use of indigenous yeasts. Wineries using CRY (4% of the sample) mainly adopt them as a part of the production in order to compare the wines with the ones traditionally obtained with commercial yeasts. CRY is perceived by some interviewees as a potential tool to increase communication and product differentiation. This survey could have anticipated future trends in the use of yeast formulations, determined by the market demands for diversified, unique, and environmentally sustainable products, that can allow an accessible application of precision enology

    Sputum induced cellularity in a group of traffic policemen.

    Get PDF
    It has been demonstrated that a group of workers (e.g. waste handlers) daily exposed to a traffic related air pollution present airway inflammation in term of an increase of neutrophilic inflammation. The aim of our study was to determine the presence of airways inflammation detected by induced sputum in a population of traffic policemen (TP) in the city of Bari, compared to a group of healthy subjects (HS) without any occupational exposure to inhalation of traffic-related air pollution. Twelve non smokers, non atopics, healthy traffic policemen with a history of exposure to airway pollution and 12 HS underwent sputum induction. TP show a statistically significant increase in the percentage neutrophil cell count (median and IQ range) compared to the HS (65 and 13.5 vs. 40.5 and 9.5; p<0.01). In conclusion we have found that policemen chronically exposed to air pollution presented airway neutrophilic inflammation and the results of this pilot study could be strictly considered for the long term effect of a traffic pollution in airway inflammation and the lung function

    LC-MS/MS-Based Profiling of Tryptophan-Related Metabolites in Healthy Plant Foods

    Get PDF
    Food plants contain hundreds of bioactive phytochemicals arising from different secondary metabolic pathways. Among these, the metabolic route of the amino acid Tryptophan yields a large number of plant natural products with chemically and pharmacologically diverse properties. We propose the identifier "indolome" to collect all metabolites in the Tryptophan pathway. In addition, Tryptophan-rich plant sources can be used as substrates for the fermentation by yeast strains to produce pharmacologically active metabolites, such as Melatonin. To pursue this technological development, we have developed a UHPLC-MS/MS method to monitor 14 Tryptophan, Tryptamine, amino-benzoic, and pyridine metabolites. In addition, different extraction procedures to improve the recovery of Tryptophan and its derivatives from the vegetal matrix were tested. We investigated soybeans, pumpkin seeds, sesame seeds, and spirulina because of their botanical diversity and documented healthy effects. Four different extractions with different solvents and temperatures were tested, and water extraction at room temperature was chosen as the most suitable procedure to extract the whole Tryptophan metabolites pattern (called by us "indolome") in terms of ease, high efficiency, short time, low cost, and sustainability. In all plant matrices, Tryptophan was the most abundant indole compound, while the pattern of its metabolites was different in the diverse plants extracts. Overall, 5-OH Tryptamine and Kynurenine were the most abundant compounds, despite being 100-1000-fold lower than Tryptophan. Melatonin was undetected in all extracts, but sesame showed the presence of a Melatonin isomer. The results of this study highlight the variability in the occurrence of indole compounds among diverse food plants. The knowledge of Tryptophan metabolism in plants represents a relevant issue for human health and nutrition

    Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499

    Get PDF
    Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for \u3949-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response

    α1-Antitrypsin Polymerizes in Alveolar Macrophages of Smokers With and Without α1-Antitrypsin Deficiency

    Get PDF
    BACKGROUND: The deficiency of α1-antitrypsin (AAT) is secondary to misfolding and polymerization of the abnormal Z-AAT in liver cells and is associated with lung emphysema. Alveolar macrophages (AM) produce AAT, however it is not known if Z-AAT can polymerize in AM, further decreasing lung AAT and promoting lung inflammation. AIMS: To investigate if AAT polymerizes in human AM and to study the possible relation between polymerization and degree of lung inflammation. METHODS: Immunohistochemical analysis with 2C1 monoclonal antibody specific for polymerized AAT was performed in sections of: 9 lungs from individuals with AAT deficiency (AATD) and severe COPD, 35 smokers with normal AAT levels of which 24 with severe COPD and 11 without COPD, and 13 non-smokers. AM positive for AAT polymers were counted and expressed as percentage of total AM in lung. RESULTS: AAT polymerization was detected in [27(4-67)%] of AM from individuals with AATD but also in AM from smokers with normal AAT with [24(0-70)%] and without [24(0-60)%] COPD, but not in AM from non-smokers [0(0-1.5)%] (p<0.0001). The percentage of AM with polymerized AAT correlated with pack-years smoked (r=0.53,p=0.0001), FEV1/FVC (r=-0.41,p=0.005), Small Airways Disease (r=0.44,p=0.004), number of CD8+T-cells and neutrophils in alveolar walls (r=0.51,p=0.002; r=0.31,p=0.05 respectively). CONCLUSIONS: Polymerization of AAT in alveolar macrophages occurs in lungs of individuals with AATD but also in smokers with normal AAT levels with or without COPD. Our findings highlight the similarities in the pathophysiology of COPD in individuals with and without AATD, adding a potentially important step to the mechanism of COPD

    Use of Native Yeast Strains for In-Bottle Fermentation to Face the Uniformity in Sparkling Wine Production

    Get PDF
    The in-bottle fermentation of sparkling wines is currently triggered by few commercialized Saccharomyces cerevisiae strains. This lack of diversity in tirage yeast cultures leads to a prevalent uniformity in sensory profiles of the end products. The aim of this study has been to exploit the natural multiplicity of yeast populations in order to introduce variability in sparkling wines throughout the re-fermentation step. A collection of 133 S. cerevisiae strains were screened on the basis of technological criteria (fermenting power and vigor, SO2 tolerance, alcohol tolerance, flocculence) and qualitative features (acetic acid, glycerol and H2S productions). These activities allowed the selection of yeasts capable of dominating the in-bottle fermentation in actual cellar conditions: in particular, the performances of FX and FY strains (isolated in Franciacorta area), and OX and OY strains (isolated in Oltrepo Pavese area), were compared to those of habitually used starter cultures (IOC18-2007, EC1118, Lalvin DV10), by involving nine wineries belonging to the two Consortia of Appellation of Origin. The microbiological analyses of samples have revealed that the indigenous strains showed an increased latency period and a higher cultivability along the aging time than the commercial starter cultures do. Results of chemical analyses and sensory evaluation of the samples after 18 months sur lies have shown that significant differences (p < 0.05) were present among the strains for alcoholic strength, carbon dioxide overpressure and pleasantness, whereas they were not observed for residual sugars content, titratable acidity or volatile acidity. Indigenous S. cerevisiae exhibited comparable values respect to the commercial starter cultures. The ANOVA has also proven that the base wine formulation is a key factor, by significantly affecting (p < 0.01) some oenological parameters of wine, like alcoholic strength, volatile acidity, carbon dioxide overpressure, titratable acidity and dry extract. The use of native yeast strains for the re-fermentation step can be considered a convenient way for introducing differentiation to the final product without modifying the traditional technology. In a perspective of "precision enology," here the wine is designed on specific vine cultivars and microorganisms, this work underlines that exploring yeast biodiversity is a strategic activity to improve the production

    SARS-CoV-2 serological profile in healthcare professionals of a Southern Italy hospital

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the first coronavirus that has caused a pandemic. Assessing the prevalence of anti-SARS-CoV-2 in healthcare worker groups offers a unique opportunity to study the correlation between seroconversion and immunization because of their occupational exposure and a higher risk of contagion. The study enrolled 3242 asymptomatic employees of “Policlinico Riuniti”, Foggia. After the first screening, we collected sequential serum samples for up to 23 weeks from the same subjects. In order to perform a longitudinal follow-up study and get information about the titration of IgG levels, we analyzed data from subjects (33) with at least two consecutive serological IgG—positive tests; 62 (1.9%; 95% CI: 1.4–2.3) tested positive for at least one anti-SARS-CoV-2 antibody. The seroprevalence was lower in the high-risk group 1.4% (6/428; 95% CI: 0.5–2.6) vs. the intermediate-risk group 2.0% (55/2736; 95% CI: 1.5–2.5). Overall, within eight weeks, we detected a mean reduction of –17% in IgG levels. Our data suggest a reduction of about 9.27 AU/mL every week (R2 = 0.35, p = 0.0003). This study revealed the prevalence of SARS-CoV-2 antibodies among Foggia’s hospital healthcare staff (1.9%). Moreover, the IgG level reduction suggests that the serological response fades fast in asymptomatic infections
    • …
    corecore