37 research outputs found

    VDES J2325−5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning

    Get PDF
    We present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift zs = 2.74 and image separation of 2.9 arcsec lensed by a foreground zl = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars showthe lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES), near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with iAB = 18.61 and iAB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002.We model the system as a single isothermal ellipsoid and find the Einstein radius θE ∼ 1.47 arcsec, enclosed mass Menc ∼ 4 × 1011 M and a time delay of ∼52 d. The relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1

    Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT

    Get PDF
    We search for excess γ-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted γ-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~2σ local) for γ-ray emission in excess of the background. However, the ensemble of derived γ-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance 1 TeV and mDM,t+t-> 70 GeV) and weakening by a factor of ~1.5 at lower masses relative to previously observed limits

    Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    Get PDF
    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—ANNZ2, BPZ calibrated against BCC-Ufig simulations, SKYNET, and TPZ—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z’s. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 0.01 over the range 0.3 < z < 1.3, we construct three tomographic bins with means of z ¼ f0.45; 0.67; 1.00g. These bins each have systematic uncertainties δz ≲ 0.05 in the mean of the fiducial SKYNET photo-z nðzÞ. We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Σcrit, finding levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of nðzÞ of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis

    The Dark Energy Survey : more than dark energy – an overview

    Get PDF
    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from ‘Science Verification’, and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be +cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed)

    Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Get PDF
    We present the results of the first observations of the emission line galaxies (ELG) of the extended Baryon Oscillation Spectroscopic Survey. From the total 9000 targets, 4600 have been selected from the Dark Energy Survey (DES). In this subsample, the total success rate for redshifts between 0.6 and 1.2 is 71 and 68 per cent for a bright and a faint samples, respectively, including redshifts measured from a single strong emission line. The mean redshift is 0.80 for the bright and 0.87 for the faint sample, while the percentage of unknown redshifts is 15 and 13 per cent, respectively. In both cases, the star contamination is lower than 2 per cent. We evaluate how well the ELG redshifts are measured using the target selection photometry and validating with the spectroscopic redshifts measured by eBOSS. We explore different techniques to reduce the photometric redshift outliers fraction with a comparison between the template fitting, the neural networks and the random forest methods. Finally, we study the clustering properties of the DES SVA1 ELG samples. We select only the most secure spectroscopic redshift in the redshift range 0.6 < z < 1.2, leading to a mean redshift for the bright and faint sample of 0.85 and 0.90, respectively. We measure the projected angular correlation function and obtain a galaxy bias averaging on scales from 1 to 10 Mpc h−1 of 1.58 ± 0.10 for the bright sample and 1.65 ± 0.12 for the faint sample. These values are representative of a galaxy population with MB − log(h) < −20.5, in agreement with what we measure by fitting galaxy templates to the photometric data

    A study of quasar selection in the supernova fields of the Dark Energy Survey

    Get PDF
    We present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/ probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid- IR W1 - W2 color, a mixture of WISE and DES colors (g − i and i - W1), and a mixture of Vista Hemisphere Survey and DES colors (g − i and i − K ). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg2 of the DES supernova fields. The catalog includes quasars with redshifts up to z4 and brighter than i = 22 mag, although the catalog is not complete up to this magnitude limit

    The Dark Energy Survey view of the Sagittarius stream : discovery of two faint stellar system candidates

    No full text
    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111−1341 and DES J0225+0304, are located at a heliocentric distance of ∼25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ∼1.73 kpc (DES J0111−1341) and ∼0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh 4.55 pc) and luminosity (MV +0.3) of DES J0111−1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (rh 18.55 pc) and luminosity (MV −1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (−2.18 [Fe/H] −0.95) and distance gradient (23 kpc D 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111−1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite

    Physical properties of star clusters in the outer LMC as observed by the DES

    No full text
    The Large Magellanic Cloud (LMC) harbours a rich and diverse system of star clusters, whose ages, chemical abundances and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey (DES) to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalogue. We quantify the crowding effect for the stellar sample produced by the DES Data Management pipeline and conclude that the stellar completeness is <10 per cent inside typical LMC cluster cores. We therefore reanalysed the DES co-add images around each candidate cluster and remeasured positions and magnitudes for their stars. We also implement a maximum-likelihood method to fit individual density profiles and colour–magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal rich than [Fe/H] ̃ -0.7 beyond 8 kpc from the LMC centre. The age distribution has two peaks at ̃1.2 and ̃2.7 Gyr

    DES J0454−4448 : discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    No full text
    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = −26.5) quasar DES J0454−4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H I near zone size of 4.1+1.1 −1.2 proper Mpc. The quasar was selected as an i-band drop out with i−z= 2.46 and zAB 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies

    Digging deeper into the Southern skies : a compact Milky Way companion discovered in first-year Dark Energy Survey data

    Get PDF
    We use the first-year Dark Energy Survey (DES) data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES 1 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources. Assuming different spatial profile parameterizations, the best-fitting heliocentric distance and total absolute magnitude in the range of 77.6–87.1 kpc and −3.00 MV −2.21, respectively. The half-light radius of this object, rh ∼ 10 pc and total luminosity are consistent with it being a low-mass halo cluster. It is also found to have a very elongated shape ( ∼ 0.57). In addition, our deeper probe of DES first-year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature
    corecore