1,227 research outputs found

    Large-scale study of the NGC 1399 globular cluster system in Fornax

    Get PDF
    We present a Washington C and Kron-Cousins R photometric study of the globular cluster system of NGC 1399, the central galaxy of the Fornax cluster. A large areal coverage of 1 square degree around NGC 1399 is achieved with three adjoining fields of the MOSAIC II Imager at the CTIO 4-m telescope. Working on such a large field, we can perform the first indicative determination of the total size of the NGC 1399 globular cluster system. The estimated angular extent, measured from the NGC 1399 centre and up to a limiting radius where the areal density of blue globular clusters falls to 30 per cent of the background level, is 45 +/- 5 arcmin, which corresponds to 220 - 275 kpc at the Fornax distance. The bimodal colour distribution of this globular cluster system, as well as the different radial distribution of blue and red clusters, up to these large distances from the parent galaxy, are confirmed. The azimuthal globular cluster distribution exhibits asymmetries that might be understood in terms of tidal stripping of globulars from NGC 1387, a nearby galaxy. The good agreement between the areal density profile of blue clusters and a projected dark-matter NFW density profile is emphasized.Comment: 9 pages, 9 figures. Accepted for publication in A&

    Holomorphic Currents and Duality in N=1 Supersymmetric Theories

    Full text link
    Twisted supersymmetric theories on a product of two Riemann surfaces possess non-local holomorphic currents in a BRST cohomology. The holomorphic currents act as vector fields on the chiral ring. The OPE's of these currents are invariant under the renormalization group flow up to BRST-exact terms. In the context of electric-magnetic duality, the algebra generated by the holomorphic currents in the electric theory is isomorphic to the one on the magnetic side. For the currents corresponding to global symmetries this isomorphism follows from 't Hooft anomaly matching conditions. The isomorphism between OPE's of the currents corresponding to non-linear transformations of fields of matter imposes non-trivial conditions on the duality map of chiral ring. We consider in detail the SU(Nc)SU(N_c) SQCD with matter in fundamental and adjoint representations, and find agreement with the duality map proposed by Kutasov, Schwimmer and Seiberg.Comment: 19 pages, JHEP3 LaTex, typos correcte

    Towards a magnetoresistive platform for neural signal recording

    Get PDF
    A promising strategy to get deeper insight on brain functionalities relies on the investigation of neural activities at the cellular and sub-cellular level. In this framework, methods for recording neuron electrical activity have gained interest over the years. Main technological challenges are associated to finding highly sensitive detection schemes, providing considerable spatial and temporal resolution. Moreover, the possibility to perform non-invasive assays would constitute a noteworthy benefit. In this work, we present a magnetoresistive platform for the detection of the action potential propagation in neural cells. Such platform allows, in perspective, the in vitro recording of neural signals arising from single neurons, neural networks and brain slices

    Clinical implications of discordant early molecular responses in CML patients treated with imatinib

    Get PDF
    A reduction in BCR-ABL1/ABL1IS transcript levels to <10% after 3 months or <1% after 6 months of tyrosine kinase inhibitor therapy are associated with superior clinical outcomes in chronic myeloid leukemia (CML) patients. In this study, we investigated the reliability of multiple BCR-ABL1 thresholds in predicting treatment outcomes for 184 subjects diagnosed with CML and treated with standard-dose imatinib mesylate (IM). With a median follow-up of 61 months, patients with concordant BCR-ABL1/ABL1IS transcripts below the defined thresholds (10% at 3 months and 1% at 6 months) displayed significantly superior rates of event-free survival (86.1% vs. 26.6%) and deep molecular response (≥ MR4; 71.5% vs. 16.1%) compared to individuals with BCR-ABL1/ABL1IS levels above these defined thresholds. We then analyzed the outcomes of subjects displaying discordant molecular transcripts at 3-and 6-month time points. Among these patients, those with BCR-ABL1/ABL1IS values >10% at 3 months but <1% at 6 months fared significantly better than individuals with BCR-ABL1/ABL1IS <10% at 3 months but >1% at 6 months (event-free survival 68.2% vs. 32.7%; p < 0.001). Likewise, subjects with BCR-ABL1/ABL1IS at 3 months >10% but <1% at 6 months showed a higher cumulative incidence of MR4 compared to patients with BCR-ABL1/ABL1IS <10% at 3 months but >1% at 6 months (75% vs. 18.2%; p < 0.001). Finally, lower BCR-ABL1/GUSIS transcripts at diagnosis were associated with BCR-ABL1/ABL1IS values <1% at 6 months (p < 0.001). Our data suggest that when assessing early molecular responses to therapy, the 6-month BCR-ABL1/ABL1IS level displays a superior prognostic value compared to the 3-month measurement in patients with discordant oncogenic transcripts at these two pivotal time points

    Physics at the front-end of a neutrino factory: a quantitative appraisal

    Get PDF
    We present a quantitative appraisal of the physics potential for neutrino experiments at the front-end of a muon storage ring. We estimate the forseeable accuracy in the determination of several interesting observables, and explore the consequences of these measurements. We discuss the extraction of individual quark and antiquark densities from polarized and unpolarized deep-inelastic scattering. In particular we study the implications for the undertanding of the nucleon spin structure. We assess the determination of alpha_s from scaling violation of structure functions, and from sum rules, and the determination of sin^2(theta_W) from elastic nu-e and deep-inelastic nu-p scattering. We then consider the production of charmed hadrons, and the measurement of their absolute branching ratios. We study the polarization of Lambda baryons produced in the current and target fragmentation regions. Finally, we discuss the sensitivity to physics beyond the Standard Model.Comment: 73+1 pages, 33 figs. Report of the nuDIS Working Group for the ECFA-CERN Neutrino-Factory study, M.L. Mangano (convener

    Detailed Balance and Intermediate Statistics

    Full text link
    We present a theory of particles, obeying intermediate statistics ("anyons"), interpolating between Bosons and Fermions, based on the principle of Detailed Balance. It is demonstrated that the scattering probabilities of identical particles can be expressed in terms of the basic numbers, which arise naturally and logically in this theory. A transcendental equation determining the distribution function of anyons is obtained in terms of the statistics parameter, whose limiting values 0 and 1 correspond to Bosons and Fermions respectively. The distribution function is determined as a power series involving the Boltzmann factor and the statistics parameter and we also express the distribution function as an infinite continued fraction. The last form enables one to develop approximate forms for the distribution function, with the first approximant agreeing with our earlier investigation.Comment: 13 pages, RevTex, submitted for publication; added references; added sentence

    N=1, D=3 Superanyons, osp(2|2) and the Deformed Heisenberg Algebra

    Get PDF
    We introduce N=1 supersymmetric generalization of the mechanical system describing a particle with fractional spin in D=1+2 dimensions and being classically equivalent to the formulation based on the Dirac monopole two-form. The model introduced possesses hidden invariance under N=2 Poincar\'e supergroup with a central charge saturating the BPS bound. At the classical level the model admits a Hamiltonian formulation with two first class constraints on the phase space T(R1,2)×L11T^*(R^{1,2})\times {\cal L}^{1|1}, where the K\"ahler supermanifold L11OSp(22)/U(11){\cal L}^{1|1}\cong OSp(2|2)/U(1|1) is a minimal superextension of the Lobachevsky plane. The model is quantized by combining the geometric quantization on L11{\cal L}^{1|1} and the Dirac quantization with respect to the first class constraints. The constructed quantum theory describes a supersymmetric doublet of fractional spin particles. The space of quantum superparticle states with a fixed momentum is embedded into the Fock space of a deformed harmonic oscillator.Comment: 23 pages, Late
    corecore