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Abstract
We present a quantitative appraisal of the physics potential for neutrino exper-
iments at the front-end of a muon storage ring. We estimate the forseeable ac-
curacy in the determination of several interesting observables, and explore the
consequences of these measurements. We discuss the extraction of individual
quark and antiquark densities from polarized and unpolarized deep-inelastic
scattering. In particular we study the implications for theundertanding of the
nucleon spin structure. We assess the determination ofαS from scaling vi-
olation of structure functions, and from sum rules, and the determination of
sin2 θW from elasticνe and deep-inelasticνp scattering. We then consider the
production of charmed hadrons, and the measurement of theirabsolute branch-
ing ratios. We study the polarization ofΛ baryons produced in the current and
target fragmentation regions. Finally, we discuss the sensitivity to physics be-
yond the Standard Model.

1 INTRODUCTION

The use of intense neutrino beams as a way of exploring the deep structure of hadrons has long been
recognized [1] as a big added value of a muon-collider [2] andneutrino-factory (ν-Factory) complex.
Recent documents [3, 4] have outlined with great care the areas where deep-inelastic-scattering (DIS)
experiments operating closely downstream of the muon ring could provide significant contributions to
our understanding of the nucleon structure.

These studies pointed out the potential for measurements ofunparalleled precision of both un-
polarized and polarized neutrino structure functions (SFs), leading to an accurate decomposition of the
partonic content of the nucleon in terms of individual (possibly spin-dependent) flavour densities. In
addition to the measurements of SFs, the large rate of charm production, allowed even with muon beam
energies as low as 50 GeV, gives an opportunity for accurate studies of the spectrum and decay prop-
erties of charmed systems (mesonic and baryonic), as well asfor an improved determination of the
CKM matrix elementVcd. Operation at muon beam energies in excess of 500 GeV would allow similar
studies usingb-flavoured hadrons. The large neutrino fluxes will also make large-statisticsνµe andνee



scattering experiments possible. These measurements may provide very accurate determinations of the
weak interaction parametersin2 θW , complementing in terms of accuracy and systematics the current
determinations from higher-energy measurements inZ0 decays and from DIS.

The goal of the work performed within our Working Group was toaddress some of the topics pro-
posed in [3, 4] in a quantitative way, and carry out a concreteappraisal of the impact that measurements
done at theν-Factory could have on relevant observables. A first study inthis direction, limited to the
case of SFs, has recently appeared in [5].

In Section 2 of this document we review our notation and describe the benchmark beam and
detector parameters used in this study. In Section 3 we discuss the determination of unpolarized SFs, and
of their flavour decomposition, using a next-to-leading-order (NLO) global fit analysis. The importance
of the NLO analysis is not related to the cross-section changes induced by NLO corrections, which
are marginal when evaluating at this stage the expected event rates, but to the mixing between quark
and gluon contributions which arise at NLO. This mixing leads to a potential loss of accuracy in the
extraction of individual flavours. A similar NLO study is documented in Section 4 for the polarized
case; there we study both the accuracy in the determination of the individual shapes of polarized parton
distributions, and the accuracy in the extraction of the proton axial charges. We shall put these results in
the framework of the ability to distinguish between different scenarios for the description of the proton
spin. The relevance of the NLO effects is even more significant in this case than in the unpolarized case,
because of the larger uncertainties on the polarized gluon contribution. In that section we also analyse
the use of tagged charm final states to study the strange quarkpolarized distribution. In Section 5 we
discuss the prospects for extractions ofαS from global SF fits, as well as from the GLS and unpolarized
Bjorken sum rules, and in Section 6 we analyse the nuclear effects involved in the extraction of charged-
current (CC) neutrino SFs from heavy targets. New prospectsin this area are opened by the availability
of new SFs, whose nuclear corrections have sizes different from those studied with data available today.
In Section 7 we discuss the extraction ofsin2 θW from νe scattering and DIS. The large statistics will
enable measurements of an accuracy similar to that available today from LEP, and will provide important
and complementary tests of the Standard Model (SM). In Section 8 we study measurements involving
charm quarks. In Section 9 we consider the application of polarization measurements in semi-exclusive
final states to the study of polarized nucleon densities. In Section 10 we finally consider the potential of
the ν-Factory for the detection of indirect evidence of new physics from precise measurements of SM
observables.

2 GENERALITIES

For our studies (and unless otherwise indicated) we shall assume the following default specifications.
Muon beam energy,Eµ = 50 GeV; length of the straight section,L = 100 m; distance of the detector
from the end of the straight section,d = 30 m; number of muon decays per year along the straight section,
Nµ = 1020; muon beam angular divergence,0.1 × mµ/Eµ, mµ being the muon mass; muon beam
transverse sizeσx = σy = 1.2 mm. We also assume a cylindrical detector, with azimuthal symmetry
around the beam axis, with a target of radiusR = 50 cm and a density of100 g/cm2 (10 g/cm2 in
the case of polarized targets). The statistics, then, scalelinearly with the detector length, while the
dependence of other parameters, such as the radius or the length of the straight section, is clearly more
complex. Some examples are given in Fig. 1.

The neutrino spectra are calculated using standard expressions for the muon decays (see e.g. [3]).
For simplicity (with the exception of theνe scattering studies), we shall confine ourselves to the case
of νµ andν̄µ CC DIS. The laboratory-frame neutrino spectra, convolutedwith the CC interaction cross-
sections, are shown for several detector and beam configurations in Fig. 2 (Eµ = 50 GeV) and Fig. 3
(Eµ = 100 GeV). The number of events, in different bins of(x,Q2), are shown in Fig. 4.
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Fig. 1: Bottom: for 50 GeV muons decaying along a straight section of lengthL = 100, 200 and 1000m, we plot the fraction

of the muon-neutrino flux contained within a circle of radiusR, at a distance of 30m from the end of the straight section. Top:

averageνµ energy for the three beam configurations, as a function ofR.

Fig. 2: CC event rates, in units of106, as function of Lab-frame neutrino spectra, for several detector and beam configurations.

The dashed lines on the left include cuts on the final-state muon (Eµ > 3 GeV) and on the final-state hadronic energy (Ehad >

1 GeV). The solid lines have no energy-threshold cuts applied. The three set of curves correpsond to different detector radiuses

(50, 10 and 5 cm, from top to bottom).
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Fig. 3: Same as Fig. 2, but for 100 GeV muon beams.

Fig. 4: Event rates, in different bins of(x, Q2), for the default beam and detector configuration (Eµ = 50 GeV,L = 100 m,

R = 50 cm).
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Fig. 5: x andQ2 binning for the generation of CC events. The crosses correspond to the weighted bin centers.

3 UNPOLARIZED STRUCTURE FUNCTIONS

3.1 Formalism

Unpolarized CC SFs are defined through the decomposition of unpolarized differential CC cross-sections
into invariant functions of the momentum of the struck quark(x) and the momentum transfer squared of
theW boson (Q2): the standard definitions give

d2σ

dxdy
=

G2
F S

2π(1 + Q2/M2
W )2

[

(1 − y)F2 + y2xF1 ± y

(

1 − y

2

)

xF3

]

, (1)

whereS = 2mEν is the nucleon–neutrino centre-of-mass energy,m is the nucleon mass,Eν is the
neutrino beam energy, assumed to be≫ m, y is the fractional lepton energy loss, or(Eν − Eℓ)/Eν ,
and the± signs refer to the sign of the CC:W+ exchange forν scattering andW− for ν̄. In neutrino
scattering,x, y, andQ2 can all be determined simply by measuring the outgoing lepton energy and
direction, and the hadronic energy in the event. If bothν and ν̄ beams are available, there are then, in
principle, six independent SFs for each target.

We now wish to determine the expected statistical accuracy with which the individual SFs, and
their flavour components, can be determined. To do this, we shall exploit the differenty dependences
of the cross section on the variousFi. The advantage of the neutrino beams from muon decays is their
wide-band nature. This allows us to modulate they dependence for fixed values ofx andQ2 using the
neutrino energy:

y =
Q2

2xmEν
. (2)

We producedy distributions by generating events within different bins of x and Q2, and performed
minimum-χ2 fits of the generated data using the cross-section Eq. (1). For each bin, the values ofx and
Q2 at which we quote the results are obtained from the weighted average of the event rate. As an input,
we used the CTEQ4D set of parton distributions [6]. The dependence on the parameterization of the
parton distributions is very small, and will be neglected here. We verified that other recent sets of parton
distributions give similar results. The absolute number ofevents expected in each bin is scaled by the
total number of muon decays; this number of events determines the statistical error on the individual SFs
obtained through the fit.

We generate events in the (x,Q2) bins shown in Fig. 5. Twenty equally-spaced bins in the range
0 ≤ y ≤ 1 are used for they fit. The total number ofx bins varies in differentQ2 bins because of
kinematic acceptance and minimum energy cuts. The statistical errors returned by the fits are used as
estimates of the statistical errors in the extraction of theFi. In the parton model, four of the SFs are
related through the Callan–Gross relationsF2 = 2xF1: the longitudinal SFFL = F2 − 2xF1 begins at

7



Fig. 6: Expected errors on the determination of the individual nucleon SFsF νN
i (x, Q2) (i = 1, 2, 3), for various ranges ofQ2.

The horizontal bars indicate the range inx defining the bins within which the statistical errors are determined.

O(αs) in perturbation theory. We considered both the cases of three-component fits (leavingF1 andF2

uncorrelated, and fitting all three SFs), and two-componentfits (assuming the Callan–Gross relation, and
fitting for F2 andF3).

The three-component fit for the nucleon SFs, obtained assuming one year exposure of a deuterium
target to a muon–neutrino beam, is shown in Fig. 6. Notice that the errors ofF1 are always better than
10%. F2 is determined very well at largex since in this region one is more sensitive to they→0 limit,
where the contribution fromF1 andF3 is suppressed (see Eq. 1). Figure 7 shows the result obtained
assuming the Callan–Gross relation. Now the relative errors are better than 1% for most regions ofx and
Q2. The significant improvement in the determination ofF3 at largex results from the Callan–Gross
constraint onF1, and the fact that, as pointed out above,F2 is very well determined at largex.

3.2 Leading-order results

The parton content of the SFsF1, F2 andF3 depends on the charge of the exchanged gauge boson. At
leading order, we have

FW+

1 = ū + d + s + c̄, FW−

1 = u + d̄ + s̄ + c,

FW+

2 = 2x(ū + d + s + c̄), FW−

2 = 2x(u + d̄ + s̄ + c), (3)

xFW+

3 = 2x(−ū + d + s − c̄), xFW−

3 = 2x(u − d̄ − s̄ + c).

The corresponding expressions for a neutron target are obtained (assuming isospin invariance) by replac-
ing u ↔ d. It is thus not difficult to see that, constructing appropriate linear combinations of the eight
independent SFs(FW±

2 )p,n and(xFW±

3 )p,n, it is possible to disentangleu± ū, d± d̄ ands± s̄, provided
only thatc ± c̄ can be determined independently, either theoretically or empirically. More explicitly, we

8



Fig. 7: Expected errors on the determination of the nucleon SFsF νN
i (x, Q2) (i = 2, 3), assuming the Callan–Gross relation,

for various ranges ofQ2. The horizontal bars indicate the range inx defining the bins within which the stastical errors are

determined. (to be included)
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Fig. 8: Expected errors on the determination ofs(x) + s̄(x). Error bars from theν-Factory are superimposed on the current

s(x) + s̄(x) fits from CTEQ and from Barone, Pascaud and Zomer (BPZ).

have

(FW++W−

2 )p = (FW++W−

2 )n = x(u + ū + d + d̄ + s + s̄ + c + c̄), (4)

(xFW+−W−

3 )p − (xFW+−W−

3 )n = −2x(u + ū − (d + d̄)), (5)

(xFW+−W−

3 )p + (xFW+−W−

3 )n = 2x(s + s̄ − (c + c̄)), (6)

(xFW++W−

3 )p = (xFW++W−

3 )n = x(u − ū + d − d̄ + s − s̄ + c − c̄), (7)

(FW+−W−

2 )p − (FW+−W−

2 )n = −2x(u − ū − (d − d̄)), (8)

(FW+−W−

2 )p + (FW+−W−

2 )n = 2x(s − s̄ − (c − c̄)), (9)

whereFW+±W−

i ≡ 1
2(FW+

i ±FW−

i ). The first and fourth of these equations are the SFsFW++W−

2 and

FW++W−

3 normally measured in neutrino scattering (though on heavy targets). The second and third
equations allow flavour decomposition of the totalq + q̄ distributions, and the fifth and sixth equations
allow a similar decomposition for the valence distributions.

A detailed study of the strange sea is especially important,since this distribution is very poorly
known at present. In a leading-order analysis one can extract the individuals(x) ands̄(x) at theν-Factory
using Eqs. (6) and (9). In order to disentangle the strange and charm contributions, it is necessary either
to tag charm in the final state, or to assume that the charm contribution is generated dynamically by
perturbative evolution. Assuming that the charm contribution can be either neglected or independently
determined, a 2-year running on a nucleon target (1 year eachfor µ+ andµ− beams) would result in
errors in the determination ofs(x)+ s̄(x) as shown in Fig. 8. There we compare the size of the predicted
uncertainties with the values of thes(x)+ s̄(x) densities currently estimated in the analysis of the CTEQ
group (set CTEQ4, [6]), and in the recent study by Barone, Pascaud and Zomer (BPZ, [7]). This last
study, based on a fit to CDHS neutrino data, finds evidence for an intrinsic strange component of the
proton, which results in an enhancement at largex relative to the CTEQ fits. As shown in the figure, this
evidence could be firmly established, and its size very accurately determined, using neutrino factory data.
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Fig. 9: Expected errors on the determination ofs(x) − s̄(x). Error bars from theν-Factory are superimposed on the current

s(x) − s̄(x) fits from Barone, Pascaud and Zomer (BPZ).

Equation (9) can then be used to estimate the errors on the determination of the differences(x) − s̄(x).
These are shown in Fig. 9, superimposed to the recent fits by BPZ.

3.3 NLO extraction of parton densities

The leading-order study presented in the previous subsection already provides a useful set of benchmark
accuracies that can be achieved at theν-Factory. However, an estimate of the precision in the extraction of
the individual parton distribution functions (PDFs) requires a full NLO analysis. In order to estimate the
statistical uncertainties in the extraction of PDFs fromν-Factory data, we used the errors calculated in the
previous section to generate 8 sets of ‘fake’ data for the SFsF2,3 for neutrino/antineutrino beams and for
hydrogen/deuterium targets. The central values of the fakedata were obtained using the PDFs extracted
from the existing charged leptons DIS data [8]. The SFsF2,3 calculated from the PDFs, parametrized as

xdV (x,Q0) = AV
d xad(1 − x)bd , xdS(x,Q0) = AS

d xasd(1 − x)bsd , (10)

xuV (x,Q0) = AV
u xau(1 − x)bu(1 + γu

2 x), xuS(x,Q0) = AS
uxasu(1 − x)bsu , (11)

xG(x,Q0) = AGxaG(1 − x)bG(1 + γG
1

√
x + γG

2 x), xs(x,Q0) = Asx
ass(1 − x)bss , (12)

at Q2
0 = 9 GeV2 and evolved within the NLO QCD approximation, were then fitted to these fake

data, varying the PDFs parameters. The form of Eq. (12) was motivated in Ref. [8], but, contrary to
that analysis, the PDFs parametersasu, As, ass, bss were also released in the fit, while the parameters
AV

d , AV
u , AG were constrained by conservation of momentum and fermionicnumbers, as in Ref.[8]. The

indicesV andS are used to denote valence and sea distributions, respectively; the functionsu, d, s,G
giveu-, d-, s-quarks, and gluon distributions; ands = s is assumed at this stage of the analysis.

The statistical errors on PDFs obtained in the fit to fake dataare given in Fig. 10. For comparison,
we present in the same figure the errors on the PDFs obtained from the analysis of Ref. [8]. One can
see that the precision in the determination of the gluon distribution has improved by about an order of
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Fig. 10: The relative statistical errors on PDFs (%) accessible at theν-Factory (full lines). The dashed lines give statistical

errors on the PDF set A99 obtained from the fit to the existing charged leptons DIS data [8].

magnitude, and even more for the valenceu- andd-quark distributions. This improvement may be ex-
tremely helpful, for example in expanding the capabilitiesof the LHC in searches for new phenomena
characterized by particles of large mass. The precision of the determination of the sea quark distribu-
tions attainable at theν-Factory cannot be directly compared with the corresponding errors on the PDFs
given in Ref. [8]; there, several parameters describing thesea quark distributions were fixed at reasonable
values, since available data do not allow their independentextraction. In particular, the strange sea was
assumed equal to about a half of the non-strange sea, while the behavior of the non-strange sea-quark
distribution at smallx was assumed to be universal. Thanks to the avaliability of eight independent com-
binations of parton distributions, a complete separation of individual flavor distributions is now possible
without additional constraints. This is crucial for precise studies of the flavour content of the nucleon.
The correlation matrix for the PDFs extracted from the QCD fitto the fakeν-Factory data is given in
Fig. 11. Indeed, one can see that in general the absolute values of the correlation coefficients do not
exceed 0.3 in the whole range ofx.

We now turn to a study of the potential of theν-Factory data to determine the asymmetry of the
strange sea, which is not accessible in neutral-current (NC) DIS experiments. In this analysis, the strange
sea was chosen to be of the form

xs(x,Q0) = Asx
ass(1 − x)bss(1 + cssx

dss), xs(x,Q0) = Asx
ass(1 − x)bsas(1 + csasx

dsas), (13)

which is motivated by the results of Ref. [7]. We now assume that thes − s̄ difference is as given in
Ref. [7], by choosing similar values of the parameters, namely

As = 0.06, bss = 5.6, bsas = 5.4, css = 11000, dss = 12, dsas = 7.4. (14)

The parameterass was set equal toasd, and the parametercsas was calculated from the constraint

∫ 1

0
dx [s(x) − s(x)] = 0. (15)
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Fig. 11: Thex-dependence of the correlation coefficientsρ for the PDFs extracted from the analysis of the generatedν-

Factory data. The labels in the diagonal mark the rows and columns of the matrix.

We cannot simply combine theses and s̄ distributions with those of Ref. [8], because thexs distribu-
tion of Eq. (13) at largex is comparable to the contribution from valence quarks, and correlated to it.
Therefore, we repeated the fit of Ref. [8] with thes ands distributions of Eqs. (13,14). We then used
the results of this fit to generate a new set of fake data, and repeated a QCD fit to these fake data using
the PDFs of Eq. (12), but with thes ands̄ distributions of Eq. (13). The errors onx(s − s) obtained in
this way are given in Fig. 12. For comparison, we recall that the error onx(s − s) obtained in the BPZ
analysis areO(0.002) atx ∼ 0.7 (see Fig. 10); this means that an improvement of more than an order of
magnitude in the precision may be achieved at theν-Factory .

Alternatively, one can choose different forms for thex(s − s) difference; for example, it may be
constructed using Regge phenomenology considerations. According to this approach, the behavior of
non-singlet parton distributions at smallx is governed by meson trajectories, and is generally∼ √

x. We
constructed two variants of the parameterization ofx(s − s) based on these arguments, namely

x(s − s)(x,Q0) = A∆sx
a∆s(1 − x)b∆s(1 + c∆sx) (16)

and
x(s − s)(x,Q0) = A∆sx

a∆s(1 − x)b∆s(1 + c∆sx + d∆sx
2). (17)

The starting PDF set of Eq. 12 was then modified by substituting xs → xs + x(s − s)/2 andxs →
xs−x(s−s)/2. The initial values of the parameters used to generate fake data were chosen asa∆s = 0.5,
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A∆s = 0.02 andb∆s = 7.5. The initial value of the parameterd∆s of Eq. (17) was set equal to 100 and,
in both cases, the parameterc∆s was defined from the constraint of Eq. (15).

The errors onx(s − s) obtained using a Regge-like form ofx(s − s) are given in Fig. 12. One
can see that they are quite different from those obtained by assuming the BPZ form forx(s − s̄). The
main difference between Regge-like and BPZ forms, is that the strange sea for the latter is very large at
high x, even larger than thed-quark sea. As a result, the precision of the strange-sea determination for
the BPZ set is comparable to the precision in the determination of the valence quark, namelyO(0.1%).
Sinces ≫ s̄ in the BPZ fit,∆(s− s̄)/(s− s̄) ≈ ∆s/s. Thus, the high precision obtained using the BPZ
form simply originates from the fact thats is very large at highx.

The precision of the determination ofx(s − s) accessible at theν-Factory will however always
be at the level of 1%, or better, in the region of its maximum, regardless of the functional form used to
parameterize this difference. The accuracy relative to thetotal amount of strange sea is given, for the
different strange parameterizations, in fig. 13.

Fig. 12: The error bands forx(s− s) difference accessible at theν-Factory for the various forms used for the parameterization

of this difference (full line: the BPZ-like form, dashed lines: the Regge-like form with linear polynomial factor, dotted line: the

Regge-like form with quadratic polynomial factor). The1σ bands are given for the the Regge-like parameterizations and 10σ

bands for the BPZ-like one.

4 POLARIZED STRUCTURE FUNCTIONS

4.1 Formalism

Polarized SFs may be defined in analogy to the unpolarized ones through asymmetries in the polarized
cross sections (see [9] for a recent review). The polarized cross-section difference (with a proton helicity
λp = ±1),

∆σ ≡ σ(λp = −1) − σ(λp = +1), (18)
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Fig. 13: Accuracy in the determination of(s − s) relative to the total amount of strange sea, for the different strange parame-

terizations.

is given by

d2∆σλℓ(x, y,Q2)

dxdy
=

G2
F

π(1 + Q2/m2
W )2

Q2

xy

{

[

−λℓ y(2 − y)xg1 − (1 − y)g4 − y2xg5

]

+2xy
m2

Q2

[

λℓx
2y2g1 + λℓ2x

2yg2 +

(

1 − y − x2y2 m2

Q2

)

xg3 (19)

−x

(

1 − 3

2
y − x2y2 m2

Q2

)

g4 − x2y2g5

]}

,

whereλℓ is the lepton helicity. With these definitions [10]1, g2 andg3 drop out in the high energy limit
E ≫ m, and we are left with an expression of the same form as the unpolarized decomposition (1), but
with F1→− g5, F2→− g4 andF3→ 2g1. Thus we again have only three partonic SFs for eachν andν̄:

d2∆σλℓ(x, y,Q2)

dxdy
=

G2
F

π(1 + Q2/m2
W )2

Q2

xy

[

−λℓ y(2 − y)xg1 − (1 − y)g4 − y2xg5

]

(20)

The two remaining SFsg2 andg3 have no simple partonic interpretation and are contaminated by twist-3
contributions: their twist-2 components are fixed by the Wandzura–Wilczek relation (givingg2 in terms
of g1) and a similar relation givesg3 in terms ofg4. They are determined by measuring asymmetries
with a transversely polarized target. In the parton model,g4 and g5 are related by an analogue [12]
of the Callan–Gross relation:g4 = 2xg5(1 + O(αs)). Even though this relation is violated beyond
leading order, the SFsg4 andg5 still measure the same combination of parton distributions, albeit with
different coefficient functions. Therefore at leading twist there are only two independent polarized SFs,
conventionally taken to beg1 andg5.

1There are many variants in the literature: see [11] for a compilation. In particular, the conventions used here are the same
as those used in ref. [5], except for the signs ofg4 andg5.
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The flavour decomposition of the SFsg1 andg5 may be expressed in terms of parton densities [13]
as

gW+

1 = ∆ū + ∆d + ∆s + ∆c̄, gW−

1 = ∆u + ∆d̄ + ∆s̄ + ∆c, (21)

gW+

5 = ∆ū − ∆d − ∆s + ∆c̄, gW−

5 = −∆u + ∆d̄ + ∆s̄ − ∆c , (22)

in precise analogy with the unpolarized case. Again, by constructing appropriate linear combinations of
all eight independent SFs (conventionally taken as(gW±

1 )p,n and(gW∓

5 )p,n), obtained by longitudinally
polarizedν and ν̄ scattering on proton and neutron (or deuteron) targets, it is possible to separately
disentangle∆u±∆ū, ∆d±∆d̄ and(∆s±∆s̄) just as in Eqs.(4)–(9), provided only that∆c±∆c̄ can
be determined.

Some combinations of polarized SFs are of particular interest. For example, writinggW+±W−

i ≡
gW+

i ± gW−

i , the first moment of

∆Σ = (gW++W−

1 )p = (gW++W−

1 )n = ∆u + ∆ū + ∆d + ∆d̄ + ∆s + ∆s̄ + ∆c + ∆c̄ (23)

is the singlet axial chargea0. This is a much more direct measurement than the traditionalone through
electron–proton or deuteron DIS, since in the latter case one must first subtract the octet chargea8 which
is then only determined indirectly through hyperon decays.Thus inν-DIS one would have a direct check
on the anomalous suppression ofa0. Similarly, first moments of

6
[

(gγ∗

1 )p − (gγ∗

1 )n
]

= (gW+−W−

5 )p − (gW+−W−

5 )n = ∆u + ∆ū − (∆d + ∆d̄) = ∆ q3 (24)

6
[

(gγ∗

1 )p + (gγ∗

1 )n
]

− 5

3

(

gW++W−

1

)

p
= (gW+−W−

5 )p + (gW+−W−

5 )n = −(∆s + ∆s̄) + (∆c + ∆c̄) ,

(25)

give direct measurements of the axial chargea3 and of the contribution of strange quarks to the nucleon
spin, as would the tagging of charm in the final state. The firstmoment of the combination

∆ q8 = ∆u + ∆ū + ∆d + ∆d̄ − 2(∆s + ∆s̄) (26)

is the octet axial chargea8, currently determined by hyperon decays using SU(3) symmetry, thereby
allowing a test of SU(3) symmetry violation, and specifically a distinction between different models for
it [14].

Flipping the signs, we can also determine the contribution of valence quarks to the spin, since

(gW++W−

5 )p = (gW++W−

5 )n = −∆u + ∆ū − ∆d + ∆d̄ − ∆s + ∆s̄ − ∆c + ∆c̄,

(gW+−W−

1 )p − (gW+−W−

1 )n = −2(∆u − ∆ū − (∆d − ∆d̄)), (27)

(gW+−W−

1 )p + (gW+−W−

1 )n = 2(∆s − ∆s̄ − (∆c − ∆c̄)),

so one could even check for intrinsic strange polarization∆s−∆s̄. None of these valence polarizations
can be cleanly measured in current polarization experiments.

It should be pointed out that the flavour separations shown above receive important contributions
from NLO corrections, most notably from contributions fromthe polarized gluon density. In particular,
g1 is given at NLO by

gNLO
1 (x,Q2) = ∆Cq ⊗ gLO

1 + 2[nf/2]∆Cg ⊗ ∆g , (28)

where the∆Ci are appropriate coefficient functions. Also, beyond leading order the relation between
parton distributions and SFs is ambiguous because of the factorization scheme ambiguity. This problem
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is particularly relevant in the case of Eq. (28), because, asis by now well known [9], the scheme depen-
dence of the first moment of the singlet polarized quark distributions is unsuppressed asαS→0, due to
the fact that at leading order the first moment∆g(1) of the gluon distribution evolves as1/αS. A conse-
quence of this is that it is possible to choose the factorization scheme in such a way that the first moment
of the singlet quark distribution is scale independent (to all perturbative orders), even though this is not
the case in theMS scheme. This is the case e.g. in the so-called Adler-Bardeen(AB) scheme [18]. The
first moment of any quark distribution in theMS and AB schemes are related by

∆qMS
i (1, Q2) = ∆qAB

i (1) − αS

4π
∆g(1, Q2), (29)

where∆q(1, Q2) =
∫ 1
0 dx∆q(x,Q2). Theoretical motivations for this choice will be discussedin

Sect. 4.3 below.

It follows that care should be taken when comparing AB andMS scheme polarized parton dis-
tributions, since the quark distributions will differ by anO(1) gluon contribution. Furthermore, in a
generic scheme, a meaningful determination of polarized parton distributions requires at least the inclu-
sion of NLO corrections. The full NLO analysis of parton distributions in neutrino DIS, using the known
anomalous dimensions [16] and coefficient functions [17], is presented in Ref. [10].

4.2 Positivity bounds on polarized densities

Cuurently available NC polarized DIS data can be used, in conjunction with specific hypotheses on the
form of ∆q − ∆q̄, to explore potential scenarios to be probed with polarizedneutrino scattering at the
ν-Factory. To start with, it is interesting to study the constraints set by positivity [19] on the values of
∆q − ∆q̄ for individual flavours. At leading order in QCD, the positivity of both left- and right-handed
quark densities implies the following obvious relations:

|∆q(x)| < q(x) , |∆q̄(x)| < q̄(x) . (30)

These constraints are shown in Fig. 14 forx(∆q − ∆q̄), with q = u, d. The allowed region is confined
between the two continuous lines. Use was made of the most recent polarized fits from ABFR [20] and of
the CTEQ5 [21] unpolarized densities. The figures show that,while the assumption∆q̄ = 0 is consistent
with the positivity bounds, the hypothesis∆q = ∆q̄ badly violates them as soon asx >

∼ 0.1–0.2. As a
result we conclude that|∆q| ≫ |∆q̄| for x >

∼ 0.1, which is reasonable in view of Eq. (30) and of the fact
thatq ≫ q̄ in this region ofx.

In the case of the strange quark, it turns out that the combination ∆s + ∆s̄ from the ABFR fit
already violates the positivity bound obtained using the unpolarized strange distributions from CTEQ5.
This bound is instead satisfied if the unpolarized strange distribution from the BPZ fit is used. In such
a case, the bound turns out to be satisfied for both∆q̄ = 0 and∆q = ∆q̄ (see Fig. 15). The NLO
corrections to the positivity bounds turn out to be negligible (see Ref. [10] for a detailed discussion).

4.3 Theoretical scenarios and the spin of the proton

One of the main reasons of interest in polarized quark distributions is the unexpected smallness of the
nucleon axial charge, which has been determined in the first generation of polarized DIS experiments. A
clarification of the physics behind this requires a determination of the detailed polarized parton content
of the nucleon. It is useful to sketch here the various scenarios to describe the polarized content of
the nucleon, which are representative of possible theoretical alternatives and could be tested in future
experiments.

Firstly, it should be noticed that even though current data give a value of the axial charge which
is compatible with zero, they cannot exclude a value as largeasa0(10 GeV2) = 0.3 [22]. Also, the
current value is obtained by using information from hyperonβ decays and SU(3) symmetry. Clearly, the
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Fig. 14: Positivity bounds onx(∆q − ∆q̄) (q = u, d, s), compared with the∆q̄ = 0 and∆q = ∆q̄ hypotheses. Unpolarized

densities taken from the CTEQ5 parametrization.
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Fig. 15: Positivity bounds onx(∆s − ∆s̄), compared with the∆s̄ = 0 and∆s = ∆s̄ hypotheses.s(x) unpolarized densities

taken from the BPZ parametrization.

Fig. 16: Accuracy in the determination ofg1(x) andg5(x) for deutoren (above) and proton (below) targets, inν (left) and ν̄

(right) scattering
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theoretical implications of an exact zero are quite different from those of a value that is just smaller than
expected in quark models. It is thus important to have a direct determination of the axial charge. If a
small value is confirmed, it could be understood as the consequence of a cancellation [23] between a large
value of the scale-independent first moment of the quark (discussed at the end of Sect. 4.1) and a large
first moment of the gluon. In this (‘anomaly’) scenario the up, down and strange polarized distributions
in the AB-scheme are close to their expected quark-model values, so in particular the strange distribution
is much smaller than the up and down distributions. In Ref. [24], this cancellation of quark and gluon
components has been derived from the topological properties of the QCD vacuum (and thus further
predicted to be a universal property of all hadrons).

If instead the polarized gluon distribution is small, the smallness of the singlet axial charge can
only be explained with a large and negative strange distribution. In this case, the scale-independent first
moment of the singlet quark distribution is also small. Thisscale-independent suppression of the axial
charge might be explained by invoking non-perturbative mechanisms based on an instanton-like vacuum
configuration [25]. In this ‘instanton’ scenario the strange polarized distribution is large and equal to the
antistrange distribution, since gluon-induced contributions must come in quark-antiquark pairs.

Another scenario is possible, where the smallness of the singlet axial charge is due to intrinsic
strangeness, i.e. the C-even strange combination is large,but the sizes of∆s and∆s̄ differ significantly
from each other. Specifically, it has been suggested that while the strange distribution (and specifically its
first moment) is large, the antistrange distribution is muchsmaller, and does not significantly contribute
to the nucleon axial charge [26]. This way of understanding the nucleon spin structure is compatible with
Skyrme models of the nucleon, and thus we will refer to this asa ‘skyrmion’ scenario [27].

Therefore, the main qualitative issues that are relevant tothe nucleon spin structure are to assess
how small the axial charge is, to determine whether the polarized gluon distribution is large, and then
whether the strange polarized distribution is large, and whether the strange polarized quark and antiquark
distributions are equal to each other or not. More detailed scenarios might then be considered, once the
individual quark and antiquark distributions have all beenaccurately determined. For instance, while the
up and down antiquark distributions are small, they need notbe zero, and in fact they could be different
from one another [28], just like their unpolarized counterparts appear to be. Investigating these issues
could shed further light on the detailed structure of polarized nucleons.

4.4 Statistical errors on polarized densities at theν-Factory

The fit to they distributions at fixedx andQ2 for a fully polarized target gives the value of the combina-
tionsF2 ± 2xg5 andF3 ± 2g1. Polarization asymmetries are extracted by combining datasets obtained
using targets with different orientations of the polarization. The statistical accuracies with which the
combinations can be performed depend on the statistical content of each individual data set. Since the
polarization asymmetries are small with respect to the unpolarized cross sections, theabsolutestatistical
uncertainties on the extraction of polarized SFs will have avery mild dependence on the value of the
polarized SFs themselves; they will be mostly determined bythe value of the unpolarized SFs (which to
first approximation fix the overall event rate), and by the polarization properties of the target.

Therefore, for simplicity, we directly use the expected statistical errorsσF2,F3 obtained in Sec-
tion 3.2 for the extraction ofF2 andF3 form unpolarized targets, assuming in this case a target thickness
of 10g/cm2. We then relate these to the errors on the polarized cross sections by using the following
relation given in [5]:

σgi
= F tgt

ν,ν̄

√
2 αij

σFj

2
, (31)

whereαij = 1 for (i, j) = (1, 3) andαij = 1/x for (i, j) = (5, 2), and whereF tgt
ν,ν̄ is a correction factor

(always larger than 1) that accounts for the ratio of the target densities toH2 or D2, for the incomplete
target polarization, and for the dilution factor of the target, namely theν (or ν̄) cross-section weighted
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ratio of the polarized nucleon to total nucleon content of the target. The factor of
√

2 in the numerator
reflects the need to subtract the measurements with oppositetarget polarization.

The values of the uncertainties in the determination of the eight CC SFs (g1 and g5 with the
two available beams and targets) are assigned at the cross-section weighted bin centres. To obtain the
absolute errors on the SFs for proton and deuterium targets we use the p-butanol and D-butanol target [29]
correction factors given in Ref. [5], namelyF p

ν = 2.6, F p
ν̄ = 1.6 andFD

ν,ν̄ = 4.4 (for a more complete
discussion of polarized targets and their complementary properties, see [5] and references therein). We
have assumed a luminosity of1020 muons decaying in the straight section of the muon ring for each
charge, for each target, and for each polarization. Assuming that only one polarization and one target can
run at the same time, this means eight years of run. While the number of muons may not be dramatically
increased, the integration time can be reduced by a large factor if the target thickness can be increased
over the conservative 10 g/cm2 assumed here, or if different targets can be run simultaneously.

4.5 Structure-function fits

We can now study how CC DIS data may be used to determine the polarized parton content of the
nucleon. This study has been performed in Ref. [10], which wesummarize here. First, we need to
make assumptions on the expected flavour content of the nucleon, implementing the theoretical scenarios
summarized in Sect. 4.3.

We define two sets of C-even polarized densities consistent with existing NC data (one set cor-
responding to a polarized gluon consistent in size with the ‘anomaly’ scenario, the second set corre-
sponding to a vanishing gluon polarization atQ0 = 1 GeV), and then to define three possible inputs
for the C-odd densities, consistent with the expectations of the three scenarios. We shall then generate
data according to these three alternatives, with the errorsdefined as in the previous section, and study the
accuracy with which their parameters can be measured at theν-Factory.

We start by describing the parametrization of the C-even densities, for which we adopt the type-A
fit of Ref. [22], defined as follows. The quark distributions∆Σ+ (23), ∆q3 (24) and∆q8 (26), and the
polarized gluon distribution∆g at the initial scaleQ2

0 = 1 GeV2 are all taken to be of the form

∆f(x,Q2
0) = Nfηfxαf (1 − x)βf (1 + γfxδf ) , (32)

where the factorNf is such that the parameterηf is the first moment of∆f at the initial scale. The
non-singlet quark distributions∆q3 and∆q8 are assumed to have the samex dependence, while the
parameterη8, corresponding to the first moment of∆q8, is fixed to the valueη8 = 0.579 from octet
baryon decay rates using SU(3) symmetry. Furthermore,γΣ = γg = 10, δ3 = δ8 = 0.75, δΣ = δg = 1.
All other parameters in Eq. (32) are determined by the fittingprocedure. Recent data [30] from the
E155 collaboration, and the final data set from the SMC collaboration have been added to those used in
Ref. [22], leading to a total of 176 NC data points.

The best-fit values of the first moments of the C-even parton distributions at the initial low scale
of Q2

0 = 1 GeV2 thus obtained are listed in the first column of Table 1, together with the errors from
the fitting procedure. The subsequent three rows of the tablegive the values of the first moments of
∆q(x,Q2) + ∆q̄(x,Q2) at Q2 = 1 GeV2 for up, down, and strange, obtained by combining the singlet
and non-singlet quark first moments above. Finally, we give in the last row the value of the singlet axial
chargea0 at the scaleQ2 = 10 GeV2.

Because the first moment of the gluon distribution in this fit is quite large, we can take this global
fit as representative of the ‘anomaly’ scenario, even thoughthe strange distribution is not quite zero. In
order to construct parton distributions corresponding to the other scenarios we have also repeated this fit
with the gluon distribution forced to vanish at the initial scale. This possibility is in fact disfavoured by
several standard deviations; however, once theoretical uncertainties are taken into account a vanishing
gluon distribution can only be excluded at about two standard deviations [22], and thus this possibility
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Table 1: Best-fit values of the first moments for the data and pseudodata fits discussed in the text.

Par. Generic fit ∆g = 0 fit ‘Anomaly’ refit ‘Instanton’ refit ‘Skyrmion’ refit
ηΣ 0.38 ± 0.03 0.31 ± 0.01 0.39 ± 0.01 0.321 ± 0.006 0.324 ± 0.008
ηg 0.79 ± 0.19 0 0.86 ± 0.10 0.20 ± 0.06 0.24 ± 0.08
η3 1.110 ± 0.043 1.039 ± 0.029 1.097 ± 0.006 1.052 ± 0.013 1.066 ± 0.014
η8 0.579 0.579 0.557 ± 0.011 0.572 ± 0.013 0.580 ± 0.012

ηu 0.777 0.719 0.764 ± 0.006 0.722 ± 0.010 0.728 ± 0.009
ηd −0.333 −0.321 −0.320 ± 0.008 −0.320 ± 0.009 −0.325 ± 0.009
ηs −0.067 −0.090 −0.075 ± 0.008 −0.007 ± 0.007 −0.106 ± 0.008

a0 0.183 ± 0.030 0.284 ± 0.012 0.183 ± 0.013 0.255 ± 0.006 0.250 ± 0.007

cannot be ruled out on the basis of present data. The results of this fit for the various first moments are
displayed in the second column of Table 1.

We can now use these parton distributions to construct the unknown C-odd parton distributions.
We construct three sets of parton distributions, corresponding to the three scenarios of Section 4.3. In
all cases, we assume∆ū(x) = ∆d̄(x) = 0. Furthermore, as the ‘anomaly’ set we take the ‘generic’
fit of Table 1 with the assumption∆s̄(x) = 0, the strange distribution for this set being relatively small
anyway. As ‘instanton’ and ‘skyrmion’ parton sets we take the ∆g = 0 fit of Table 1, with∆s = ∆s̄
in the former case, and∆s̄ = 0 in the latter case. The charm distribution is assumed to vanish below
threshold, and to be generated dynamically by perturbativeevolution above threshold. With these choices
all quark and antiquark distributions are fixed, and thus allSFs can be computed.

We generate for each of these three scenarios a set of pseudo data, by assuming the availability of
neutrino and antineutrino beams, and proton and deuteron targets, in the (x,Q2) bins of Fig. 5. The data
are gaussianly distributed about the values of the SFs at each data point in the three scenarios. We obtain
in this way approximately 70 data points for each of the eightCC SFs.

We proceed to fit a global set of data, which includes the original NC data as well as the generated
CC data. We assign to the generated data the estimated statistical errors, and fit including statistical
errors only. The errors assigned to the NC data are instead obtained, as in our original fits, by adding in
quadrature the statistical and systematic errors given by the various experimental groups.

The fits are performed by adopting the same functional form and parameters as in the original fit for
the C-even parton distributions, except that the normalization of the octet C-even distributionη8 is now
also fitted. For the C-odd parton distributions, we add six new parameters, namely the normalizations of
the up, down and strange C-odd distributions, and three small-x exponentsα (corresponding to anxα

small-x behaviour). The shape is otherwise taken to be the same as that of the C-even quark distributions.

4.5.1 Results for first moments

The best-fit values of all the normalization parameters are shown in the last three columns of Table 1,
where the rows labelledηu, ηd andηs now give the best-fit values and errors on the first moments of
∆q− ≡ ∆q −∆q̄. A comparison of these values with those of our original fits leads to an assessment of
the impact of CC data on our knowledge of the polarized partoncontent of the nucleon.

First, we see that the improvement in the determination of the polarized gluon distribution is
small, though significant. This is because the gluon distribution is determined by scaling violations, and
the available range ofQ2 at aEµ = 50 GeVν-Factory is limited.

Let us now consider the C-even quark distributions. The error on the first moment of the singlet
quark∆Σ is reduced by the CC data by a factor of 3–5 relative to the available NC data. This improve-
ment is especially significant since the determination ofηΣ no longer requires knowledge of the SU(3)
octet component, unlike that from NC DIS, and it is thus not affected by the corresponding theoretical
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uncertainty. With this accuracy, it is possible to experimentally refute or confirm the anomaly scenario by
testing the size of the scale-independent singlet quark first moment. Correspondingly, the improvement
in knowledge of the gluon first moment, although modest, is sufficient to distinguish between the two
scenarios.

The determination of the singlet axial charge is improved byan amount comparable to the im-
provement in the determination of the singlet quark first moment. Its vanishing could thus be established
at the level of a few per cent. The determination of the isotriplet axial charge is also significantly im-
proved: the improvement is comparable to that on the singletquark; it is due to the availability of the
triplet combination of CC SFs given in Eq. (24). This would allow an extremely precise test of the
Bjorken sum rule, and accordingly a very precise determination of the strong coupling. Finally, the octet
C-even component is now also determined, with an uncertainty of a few per cent. Therefore, the strange
C-even component can be determined with an accuracy better than 10%. Comparing this direct determi-
nation of the octet axial charge to the value obtained from baryon decays would allow a test of different
existing models of SU(3) violation [14].

Coming now to the hitherto unknown C-odd quark distributions, we see that the up and down
C-odd components can be determined at the level of few per cent. This accuracy is just sufficient to
establish whether the up and down antiquark distributions,which are constrained by positivity to be
quite small, differ from zero, and whether or not they are equal to each other. Furthermore, the strange
C-odd component can be determined at a level of about 10%, sufficient to test for intrinsic strangeness,
i.e. whether the C-odd component is closer in size to zero or to the C-even component. The ‘instanton’
and ‘skyrmion’ scenarios can thus also be distinguished at the level of several standard deviations.

Of course, only experimental errors have been considered sofar. In Ref. [22] it has been shown
that theoretical uncertainties on first moments are dominated by the small-x extrapolation and higher-
order corrections. The error due to the small-x extrapolation is a consequence of the limited kinematic
coverage. This will only be reduced once beam energies higher than envisaged in this study will be
achieved; otherwise, this uncertainty could become the dominant one and hamper an accurate determi-
nation of first moments. On the other hand, the error due to higher-order corrections could be reduced,
since it is essentially related to the fact that available NCdata must be evolved to a common scale, and
also errors are amplified [9] when extracting the singlet component from NC data because of the need to
take linear combinations of SFs. Neither of these procedures is necessary if CC data with the kinematic
coverage considered here are available.

4.5.2 Results forx distributions

The best-fit SFs corresponding to the ‘anomaly’ refit (third column of Table 1) are displayed as functions
of x at the scale corresponding to the bin 4 GeV2 ≤ Q2 ≤ 8 GeV2, and compared with the data in Fig. 16.
Note that the SFsg1 andg5 always have opposite signs because the (dominant) quark component ing1

andg5 has the opposite sign, while the antiquark component has thesame sign. For comparison, we also
display the SFs at the initial scale of the fits, and at a high scale. The good quality of the fits is apparent
from these plots.

Given the poor quality of current knowledge of the shape of polarized parton distributions, it is
difficult to envisage detailed scenarios and perform a quantitative analysis of the various shape parame-
ters, as we did for first moments. However, it is possible to get a rough estimate of the impact of CC data
on our knowledge of thex dependence of individual parton distributions by considering the following
combinations of SFs, which, at leading order, are directly related to individual parton distributions:

1

2

(

gW−

1 − gW−

5

)

= ∆u + ∆c;
1

2

(

gW+

1 + gW+

5

)

= ∆ū + ∆c̄; (33)

1

2

(

gW+

1 − gW+

5

)

= ∆d + ∆s;
1

2

(

gW−

1 + gW−

5

)

= ∆d̄ + ∆s̄. (34)
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Fig. 17: The combinations of SFs of Eq. (33), and the corresponding parton distributions.

Fig. 18: The combinations of SFs of Eq. (34), and the corresponding parton distributions.

In Figs. 17 and 18 we show, respectively, the combinations ofEqs. (33) and (34) for a proton target,
together with the pseudodata for the same combinations of SFs, in the bin 4 GeV2 ≤ Q2 ≤ 8 GeV2. In
each figure we also display the two parton distributions, which contribute at leading order to the relevant
combination of SFs atQ2 = 7 GeV2, as well as(αS/π)∆g at the same scale.

Let us consider the leftmost plot in Fig. 17. It is apparent that the expected statistical accuracy
is very good for all data withx > 0.1. This suggests that an accurate determination of the shape of
∆u + ∆c is possible. Furthermore, it is also clear that∆c (dotted curve) is extremely small with respect
to ∆u (solid curve). However, we observe that the difference between the∆u distribution (solid) and the
data is of the order of 15% to 20% for allx below 0.4. This difference is entirely due to NLO corrections.
Specifically, the gluon contribution (dot-dashed curve), which spoils the leading-order identification of
the quark parton distribution with the SF, as discussed in Sect. 4.1, Eq. (28), is small but non negligible.
Because the various contributions to NLO corrections (in particular the gluon distribution) are affected by
sizeable theoretical uncertainties [22], this implies that ∆u can only be determined with an error that is
considerably larger than the experimental one. At larger scales, the subleading corrections to coefficient
functions are expected to be smaller and smaller, while a residual gluon contribution persists, because of
the axial anomaly [23].

A similar analysis of the left plot of Fig. 17 tells us that a determination of the shape of∆ū is
essentially impossible. This combination of SFs is the preferred one for a determination of the charm
distribution, since perturbatively we expect∆c = ∆c̄, and∆ū is much smaller than∆u. Nevertheless,
it is apparent from this figure that even in this case a determination of the charm distribution is out of
reach.
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A study of the down quark and antiquark distributions can be similarly performed by looking at
Fig. 17. The conclusion for∆d is similar, although perhaps slightly less optimistic, to that for ∆u: a
reasonable determination of its shape is possible, but withsizeable theoretical uncertainties. Likewise,
the conclusion for∆s is similar to that on∆c, namely, a determination of its shape is out of reach. The
lower plot shows that no significant information on the shapeof ∆d̄ or ∆s̄ can be obtained from this
analysis. An alternative handle for the determination of∆s and∆s̄ is provided by the study of events
with a tagged final-state charm, as discussed in the next subsection.

4.6 Extraction of ∆s(x) and ∆s̄(x) from tagged charm

At leading order, charm quarks are produced by CC DIS off a strange or a down quark. The combination
of strange and down quark distributions is determined by theCKM quark-mixing matrix and can be
written as an effective distribution

sc(x,Q2) = |Vcs|2s(x,Q2) + |Vcd|2d(x,Q2) , (35)

where|Vcs|2 ≈ 0.95 and|Vcd|2 ≈ 0.05 are the squared CKM matrix elements. The same expression is
valid for the antiquark distributions and for the polarizeddistributions.

For heavy-quark production, thex andQ2 determined from the momentum of the final-state lep-
ton cannot be directly related to the momentum fraction and virtuality of the scattered parton. Taking
kinematical corrections into account, one finds [31] that the parton distributions are probed at momentum
fractionξ = x(1 + m2

c/Q
2) and virtualityµ2

c = Q2 + m2
c .

The cross section for charm-quark production in CC DIS can beobtained from the inclusive cross
section (1) by replacing the inclusive SFs with charm production ones, which read at leading order:

FW+

1,c (x,Q2) = sc(ξ, µ2
c),

FW−

1,c (x,Q2) = s̄c(ξ, µ2
c),

FW+

2,c (x,Q2) = 2ξsc(ξ, µ2
c),

FW−

2,c (x,Q2) = 2ξs̄c(ξ, µ2
c),

FW+

3,c (x,Q2) = 2sc(ξ, µ2
c),

FW−

3,c (x,Q2) = −2s̄c(ξ, µ2
c). (36)

An alternative procedure to incorporate effects from the charm-quark mass into the cross section has
been proposed in [32]. The predictions obtained in either prescription differ by less than 15%.

The CC production of charmed hadrons in the final state off polarized targets allows a direct
measurement of the polarized strange quark and antiquark distributions. The polarized cross-section
difference can be obtained from the expression for inclusive CC DIS (20), by replacing the SFs; the
leading-order expressions read:

gW+

1,c (x,Q2) = ∆sc(ξ, µ2
c),

gW−

1,c (x,Q2) = ∆s̄c(ξ, µ2
c),

gW+

4,c (x,Q2) = −2ξ∆sc(ξ, µ2
c),

gW−

4,c (x,Q2) = 2ξ∆s̄c(ξ, µ2
c),

gW+

5,c (x,Q2) = −∆sc(ξ, µ2
c),

gW−

5,c (x,Q2) = ∆s̄c(ξ, µ2
c). (37)
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Fig. 19: Estimated statistical errors on the polarized strange and antistrange quark distributions, compared to the GS(A) [33]

and GRSVv [34] parametrizations.

The resulting leading-order cross-section asymmetry (18)is the ratio of polarized to unpolarized effective
strange-quark distributions:

AW+

1,c (x,Q2) =
∆sc(ξ, µ2

c)

sc(ξ, µ2
c)

, AW−

1,c (x,Q2) = −∆s̄c(ξ, µ2
c)

s̄c(ξ, µ2
c)

. (38)

With sc(ξ, µ2
c) and s̄c(ξ, µ2

c) being known from high-statistics measurements off unpolarized targets, a
measurement of these asymmetries can be turned into a determination of the polarized strange quark and
antiquark distributions.

The statistical error on an extraction of the polarized distributions from these asymmetries is given
by [5]:

σ∆sc(ξ,µ2) = F tgt
ν,ν̄

sc(ξ, µ2)
√

2Nν,ν̄
, (39)

whereNν,ν̄ is the number of CC charm production events per target polarization. The estimate of sta-
tistical errors follows the analysis detailed above. The target correction factorsF tgt

ν,ν̄ , which account
for the target density, the incomplete target polarizationand the dilution factor (cross-section-weighted
fraction of polarizable to unpolarizable nucleons in the target), have to be re-evaluated. Taking into ac-
count the charm production cross sections off protons and isoscalar nucleons, we obtainF tgt

ν = 3.3 and
F tgt

ν̄ = 2.5. We assume 100% charm reconstruction efficiency. It is expected that the experiments to be
built for aν-Factory will have efficiencies rather close to this optimalchoice.

In estimating the statistical errors, we use the same specifications as in the inclusive studies on
polarized targets above:Eµ = 50 GeV,Nµ = 1020 per target polarization, decaying in a straight section
of 100 m length, a proton target with target density of 10 g/cm2, a detector with radius of 50 cm positioned
at distance of 30 m from the end of the straight section. The cuts applied on the events are a minimum
cut on the final-state muon energy of 3 GeV and minimum cut on the partonic centre-of-mass energy
equal to the charm-quark mass. We use the same bins inx andQ2 as in the inclusive studies (Fig. 5),
and compute the weighted mean values ofξ andµ2 for each bin.

Figures 19a,b show the expected statistical errors on∆sc(ξ, µ2
c) and∆s̄c(ξ, µ2

c). Since the polar-
ized antidown-quark distribution is not expected to be substantially larger than the polarized antistrange
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Fig. 20: Polarized heavy quark production cross section at NLO, using the polarized GRSVv [34] parton distribution functions.

one, one can determine∆s̄(ξ, µ2
c) ≃ ∆s̄c(ξ, µ2

c). The effective polarized strange-quark distribution does,
however, receive a significant contribution from the polarized down-quark distribution. Approximating
the relative error on∆d(x,Q2) to be 10% over the full range inx andQ2 (Fig. 18), we can estimate
the error on∆s(ξ, µ2

c) extracted from∆sc(ξ, µ2
c). The result is shown in Fig. 19c. The comparison of

Figs. 19b and 19c shows that a possible discrepancy between∆s(ξ, µ2
c) and∆s̄(ξ, µ2

c) (as suggested for
the unpolarized distributions in [7]) could be detected at alevel of about 20%.

A major uncertainty in the extraction of the polarized strange-quark distribution from charm-quark
production arises from higher-order QCD corrections, consistent with the fact, discussed at the end of
Sect. 4.1, that the singlet quark distribution is affected by large factorization scheme ambiguities. The
NLO contribution from the boson–gluon fusion process to heavy-quark production is proportional to the
size of the polarized-gluon distribution, which is at present only constrained very loosely from the scale
dependence of the inclusive polarized SFs. Figure 20 illustrates the relative magnitude of leading and
NLO quark and gluon contributions for the GRSVv polarized parton distribution. It can be seen that
the next-to-leading order gluon-induced subprocess amounts to a 50% correction for this distribution.
It follows that the NLO error estimates of Figs. 17,18 cannotbe compared directly to the LO error
estimates of Fig. 19, which do not include the uncertainty from higher order gluonic contributions. For
other parameterizations of polarized parton distributions the effect is smaller (since the strange quark
distributions are in general assumed to be larger than in GRSVv), amounting typically to a gluonic
contribution of 25%. Note also that to NLO a finite renormalization is necessary in order to relate
quark distributions given in theMS scheme (such as GRSVv) with those of the AB–scheme shown in
Figs. 17,18. This transformation is given for first moments in Eq. (29).

As in the case of the results obtained form global fits of inclusive SFs, discussed in the previous
subsection, the appearance of the gluon contribution at NLOposes the most significant limitation to the
extraction of the polarized strange densities, even when using tagged-charm final states. An accurate
knowledge of the polarized gluon density is therefore a mandatory ingredient for the full statistical po-
tential of theν-Factory to be exploited. The COMPASS experiment will provide a measurement of the
polarized gluon distribution in the kinematic range relevant to the present studies. To which extent this
new knowledge will improve the prospects for the extractionof the polarized strange component of the
proton, will be known once the COMPASS results are available.

5 MEASUREMENTS OF αS

The value of the strong couplingαS is one of the fundamental parameters of nature. There is al-
most no limit to our need to determine it with more and more precision. The study of scaling vio-
lations of DIS SFs and the deviation from the quark–parton model prediction of DIS sum rules, e.g.
of the Gross–Llewellyn Smith (GLS) sum rule [35], have provided in the past, and still provide, an
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important framework for measuringαS. Good examples are the recent NLO global analysis [8] of ex-
isting charged-lepton DIS data, givingαS(MZ) = 0.1165 ± 0.0017(stat + syst)+0.0026

−0.0034 (theor) and
the detailed NLO studies [36] of the 1993/94 HERA data forF p

2 at small x and largeQ2, giving
αS(MZ) = 0.122 ± 0.004(exp) ± 0.009(theor). Theoretical errors of the latter value ofαS(MZ)
are dominated by the renormalization and factorization scheme ambiguities, and by ambiguities in the
resummation of small-x logarithms. The former might be reduced after taking into account next-to-next-
to-leading order (NNLO) perturbative QCD effects. Indeed,NNLO combined fits to the charged-lepton
DIS data [37] give smaller uncertainties. The latter could be reduced thanks to recent theoretical progress
in the small-x resummation [38].

A NNLO analysis of theνN DIS data of the CCFR collaboration forxF3 [39] givesαS(MZ) =
0.118 ± 0.002(stat) ± 0.005(syst) ± 0.003(theor) [40] (more detailed studies of these data are now
in progress [41]). This value should be compared with the independent NLO extraction ofαS from the
xF3 andF2 data of the same collaboration:αS(MZ) = 0.1222 ± 0.0048(exp) ± 0.0040(theor) [42].
Other available estimates ofαS(MZ), including accurate NNLO results obtained from the analysis of
LEP data and ofτ decays, can be found in recent extensive reviews [43, 44]. Inthis section we will
study the potential impact of future SF measurements at theν-Factory on the determination ofαS. The
influence of the higher-twist (HT) terms, which become important in the extraction ofαS at relatively
low energies, will be analysed as well.

5.1 Determination ofαS and higher-twist terms from QCD fits of the SF data

To estimate the projected uncertainties on the determination ofαS at theν-Factory, we applied the same
procedure as we used in the estimate of the uncertainties in PDFs (see Section 3.2). The power corrections
of O(1/Q2) were also included into the generation of the fakeν-Factory data and in the fits. The target
mass corrections (TMC) ofO(M2/Q2) were taken into account following Ref. [45]. The additional
dynamical twist-4 non-perturbative contributions were parameterized in the additive form:

F2(x,Q2) = F2(x,Q2)LT,TMC + H2(x)
1 GeV2

Q2
, (40)

xF3(x,Q2) = xF3(x,Q2)LT,TMC + H3(x)
1 GeV2

Q2
, (41)

whereFLT,TMC
2,3 are the results of NLO QCD calculations with TMC included, and H2,3 are parametrized

at x = 0, 0.1, . . . , 0.8 and linearly interpolated between these points. Since the fitted functions depend
on H2,3 linearly, the errors on the coefficients ofH(x) at x = 0, 0.1, . . . , 0.8 do not depend on their
central values.

The NLO fit to the generatedF2 andxF3 “data” returns a statistical error∆αS(MZ) = 0.00029.
This is much better than the statistical error onαS obtained in the global analysis of charged-lepton DIS
data [8] and it is 16 times smaller than the one obtained in theanalysis of the CCFR neutrino DIS data
of Ref. [39], which used a model-independent description ofthe HT effects [42].

We verified that the extraction of the error is quite stable against changes in the PDF parametriza-
tion. To obtain this result we repeated the analysis, generating central values ofF2 andxF3 and using
the parametrization of these SFs obtained from the NLO fit to the CCFR data given in Ref. [42]. Even
though the functional form and the number ofF2 andxF3 parameters used in the two cases are quite
different, the difference in the errors onαS is negligible with respect to the statistical accuracy of the
individual fits.

We also carried out a NLO fit using only thexF3 data. This results in∆αS(MZ) = 0.00074, which
is about 2 times larger than the uncertainty obtained from the fit to the combinedF2 andxF3 data. It must
be pointed out, however, that the use ofF2 in the fit introduces a strong correlation between the value of
αS and the sea and gluon densities, leading to a potential source of further systematics. In addition, the

28



Fig. 21: The errors on HT contributions accessible at theν-Factory.

fit to xF3 only has the advantage that inclusion of higher-order QCD corrections will be simpler, since
the NNLO corrections to the coefficient function of the DGLAPequation are known [46]. Moreover, a
model of the NNLO non-singlet (NS) splitting function [47, 48] was also recently constructed, using the
results of the explicit analytical calculation of the NNLO corrections to the NS anomalous dimensions, at
fixed number of NS Mellin moments [49, 50, 51] and using additional theoretical information, contained
in Refs. [52, 53] (for more details see for instance the review [54]). For this reason the analysis ofxF3

may give useful information onαS both at NLO and at NNLO.

The expected precision of theν-Factory data exceeds that of available measurements of DISSFs
at moderateQ2. This may allow us to improve our knowledge of the HT contributionsH2,3. The errors
on the coefficients of the functionsH2,3, which can be obtained from the analysis ofν-Factory data, are
given in Fig. 21. These errors were obtained from the fits described above, alongside the errors onαS

(the simultaneous estimate of the HT andαS errors is very important in view of possible correlations
between them). The errors on the HT contributions are smaller by over one order of magnitude than
those extracted from the CCFR data [40, 55].

The data obtained at theν-Factory could then be used for the verification of the modelsdescribing
the HT terms. One of these models is based on the application of the infrared renormalon (IRR) technique
[56, 57]. The advantage of this approach is that it connects the HT contributions with the leading twist
ones. For example, in the NS approximation the IRR model of twist-4 contributions has the following
form:

H2,3(x) = A
′

2

∫ 1

x
dzC2,3(z)FLT

2,3 (x/z,Q) . (42)

HereC2,3(z) are calculated in Ref. [58], and the parameterA
′

2 introduced there can be expressed as

A
′

2 = −2CF

β0
Λ2 , (43)

whereCF = 4/3 andβ0 is the first coefficient of the QCDβ-function. (A similar definition was used in
Ref. [59] in the comparison of the IRR model predictions forF2,3,L with the data.) The parametersΛ2

2,3

for the IRR model can be extracted from theν-Factory data with the errors∆Λ2
3 = 0.0030 GeV2 and

∆Λ2
2 = 0.037 GeV2 (for comparison, the preliminary results of the combined analysis of the CCFR [39]
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and the JINR–IHEP [60] collaborations data areΛ2
3 = 0.44 ± 0.19 GeV2 andΛ2

2 = 0.91 ± 0.77 GeV2

[61]) 2.

It is worth stressing that the results of the NNLO fits to the CCFR data [40, 55], which use the
NNLO QCD expressions for the Mellin moments ofxF3 and the anomalous dimensions calculated in
Refs. [49, 50], demonstrate the effect of shadowing of the twist-4 terms by higher-order perturbative
QCD corrections. It should also be stressed that the decrease of the size of the fitted HT contributions at
the NNLO level is confirmed independently by the DGLAP analysis of the combinedF2 charged-lepton
data made by the MRST collaboration [63], which incorporates NNLO corrections to both the coefficient
function [64] and the model of the splitting function [47]. However, since Ref. [63] did not assign
errors to the HT terms extracted at NLO and NNLO, we cannot decide whether the effects observed
in Refs. [40, 55] arise from the incorporation of the NNLO corrections into DIS fits, or whether they
demonstrate a lack of precision of the analysed data. The possible analysis of more precise data from the
ν-Factory may allow us to clarify this point. We evaluate thatthe correlation coefficients betweenαS and
H2,3 are not so large: their maximal value is∼ −0.7 atx ∼ 0.5. This allows the unambiguous separation
of the logarithmic-like and power-like contributions to the Bjorken scaling violation. In particular, it is
possible to hope that a clearer separation of the twist-4 effects from the perturbative QCD contributions
may be possible at the NNLO level. The detailed study of this problem is rather intriguing.

5.2 Determination ofαS from the Gross–Llewellyn Smith sum rule

The value ofαS can be also determined from the GLS integral

SN
GLS(Q2) =

1

2

∫ 1

0
dx
(

F νp
3 (x,Q2) + F νn

3 (x,Q2)
)

. (44)

At O(α3
S) and including theO(1/Q2) corrections, the GLS integral forf = 4 massless active flavours

is equal to [65]:

SN
GLS(Q2) = 3



1 − αS(Q
2)

π
− 3.25

(

αS(Q
2)

π

)2

− 12.2

(

αS(Q
2)

π

)3


− h

Q2
. (45)

The GLS integral has been measured in a number of experiments(see for instance Ref. [66] for a review).
Its Q2 dependence was extracted by combining the CCFR data forxF3 [39] with those from CERN and
IHEP experiments, at several energy bins [67].

In many other processes the theoreticalαS uncertainty is dominated by the error due to the trun-
cation of the higher-order perturbative QCD corrections. Since the theoretical expression for the GLS
integral is known up to 3-loopαS corrections, the scale- and the scheme-dependence ambiguities on the
αS extraction from the GLS sum rule can be minimized (see Ref. [68]). The mentioned theoretical uncer-
tainties can survive if theQ2-region of the data used for the estimate of the integral is large and theO(α2

S)
approximation needs to be used to interpolate data from differentQ2 regions [69]. This problem can be
avoided if the data are split into relatively smallQ2 bins, as is expected at theν-Factory. An additional
contribution to the GLS sum rule comes from heavy quarks (c, s). The heavy-quark mass correction is
known atO(α2

S) [70]. Its effect is small at energies close to the threshold,and is comparable in size with
estimates of the masslessO(α4

S) correction made with different methods [71]. Together withthe mass-
less contributions, the mass-dependent terms are therefore under control. In the asymptotic regime, these
affect the threshold matching conditions [72], and introduce an uncertainty of about6.5mq in the choice
of the matching point. This uncertainty leads to an additional theoretical ambiguity of approximately
0.002 on the value ofαS(MZ) (see e.g. Ref. [40]).

2While completing our report we learned of the newxF3 data, obtained recently by the H1 Collaboration at HERA [62].
These data are related to rather highQ2 region (Q2 ≥1500 GeV2). We therefore expect no essential improvement of our
estimates from the inclusion of H1 data into these fits.
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Table 2: The statistical errors on GLS integrals at different Q bins, obtained from the different data sets (I: generated data for

ν-Factory only; II: the same data for theν-Factory combined with the CCFR data of Ref.[39]).

Q2 [GeV2] I II
1–2 0.0074 0.0073

2–3.5 0.0086 0.0084
3.5–7 0.013 0.013
7–14 0.028 0.021
14–28 0.11 0.039
28–200 – 0.054

Fig. 22: The outer error bars are determined by the GLS errorsof column I of Table 2, while the inner ones are fixed by the

GLS errors of column II. The points at largestQ2-bins are extracted from the CCFR data only. The curve shows the errors on

αS due to the uncertainties of higher-twist contributions.

An important source of experimental uncertainty on the measured GLS integral is the error due
to the extrapolation ofxF3 to the unmeasured high- and low-x regions. This error can be large if the
neutrino energy is limited, as is the case for the 50 GeVν-Factory option. To estimate this error for
different values ofQ2 we split thexF3 data, used in the analysis of Subsection 5.1, in several binsof Q2,
and then generate randomxF3 values in each bin with the central values given by

xF3(x) =
I3

A
xa(1 − x)b , A =

∫ 1

0
dxxa−1(1 − x)b . (46)

The statistical errors are given by the study of Section 3. The values of the parameters used for the
generation were chosen asI3 = 3, a = 0.7, b = 4. Then Eq. (46) is fitted to the generated data in each
Q2 bin with the parametersa, b, andI3 set free. The uncertainty in the fitted value ofI3, which gives
the uncertainty on the GLS integral, accounts for the uncertainty in the extrapolation to the unmeasured
x regions. The errors on the fitted values ofI3 are given in Table 2. One can see that at highQ2 the
errors are quite large. Combining theν-Factory data with the CCFR measurements of Ref. [39] one
can obtain a significant improvement in the precision of the GLS integral determination, since the two
sets of data have a complementaryx coverage. This is shown in the second column of Table 2, where
the errors are significantly smaller than those obtained in Ref. [67] from the analysis of the combined
CERN–FNAL–IHEP data with similar binning inQ2.

The estimates of the uncertainties onαS, which can be obtained from the measurements of the
GLS integral at aν-Factory, are given in Fig. 22. The central points forαS shown in this figure were
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calculated from the solutions of the 2-loop and 3-loop renormalization group equations with the boundary
valueαS(MZ) = 0.118. The error bars of the points were obtained by rescaling the statistical errors on
I3 given in column II of Table 2 by the factor ofdSGLS/dαS in eachQ2 bin. The statistical error onαS

is smaller atO(α2
S) since|dS/dαS| is larger at this order. The errors given in Fig. 22 are small enough

to allow for the clear observation of theQ2 dependence of the QCD coupling constant measured in one
single process and the comparison with various theoreticalpredictions.

In order to estimate theαS(MZ) precision accessible from the GLS measurements, we fitted the
expression of Eq. (45) to the points of Fig. 22. The analysis was made both atO(αS) and atO(α2

S).
Since in our analysis the low-Q2 data from theν-Factory are used, an important source of the totalαS

error is related to the error in the HT parameterh of Eq. (45). It should be stressed that, contrary to the
x-dependence ofH3(x), the theoretical estimates of its first moment, related to the GLS sum rule, are
theoretically more solid. In fact in this case we know the expression for the local operator contributing
to the dynamicalO(1/Q2) correction [73]. Moreover, there are several model-dependent calculations
of the value of this operator. The first one comes from the QCD sum rules method [74], implemented
in its 3-point function realization in the work of Ref. [75] and later on in Ref. [76]. Another estimate
of the value of the twist-4 contribution to the GLS sum rule comes from the instanton vacuum model
[77]. Within theoretical errors, the results of the model-dependent calculations of Refs. [75, 76, 77] are
in agreement.

To extractαS(MZ) with a model-independent treatment of the HT corrections, we fitted the ex-
pression of Eq. (45) with the parameterh set free. AtO(α2

S), and using the analysis of the GLS data with
the errors from column II of Table 2, we get the following results:

∆αS(MZ) = 0.0035 , ∆h = 0.13 GeV2 . (47)

At O(αS) we get instead:

∆αS(MZ) = 0.0039 , ∆h = 0.07 GeV2 . (48)

The cause of the only marginal improvement in accuracy when going to higher order is the faster decrease
of SGLS with Q2, and the consequent increased correlation ofαS with the HT termh/Q2. The influence
of the uncertainties of the high-twist correction on the precision of theαS determination at variousQ2

is illustrated in Fig. 22, where the value∆h/Q2 rescaled with the factordSGLS/dαS is given as well.
Notice from Fig. 22 that this uncertainty weakly depends on the perturbative approximation for the GLS
sum rule used in the analysis. One can also see that at smallQ2 the errors onαS due to HT uncertainties
are increasing. Since the values forαS at largeQ2 have large statistical errors, the related value of
αS(MZ) is mainly determined by the uncertainties of HT correctionsand does not change significantly
from theO(αS) fit to theO(α2

S) one.

If one fixesh, the statistical error onαS(MZ) in theO(α2
S) fit to the data with errors from column II

of Table 2 reduces to 0.00026. In this case, however, the uncertainty onαS due to the model dependence
of h [75, 76, 77] is large (see e.g. [68]). For this reason, the error on αS obtained by considering the
model-dependent estimates of the HT contributions to the GLS sum rule is essentially the same as the
one defined from the existing neutrino DIS data. Therefore itseems more appropriate to analyse the
GLS sum rule data from theν-Factory using the fit with the model-independent definitionof the HT
contribution.

5.3 Measurement ofF1(x) and unpolarized Bjorken sum rule

While F1(x,Q2) is known theoretically to be related toF2(x) via the Callan–Gross relation and its
calculable higher-order corrections, only recently have the experiments attempted a direct measurement
from the data. Preliminary results on the determination ofF νN

1 (x,Q2) from the largey = Ehad/Eν

behaviour ofd2σνN/dxdy have been obtained by the CHORUS collaboration at CERN [78] and by the

32



Fig. 23: Theoretical errors onαS(MZ) from theν-Factory measurement of the unpolarized Bjorken sum rule atdifferentQ2

values. The dotted line correspond to the contributions of the TMC uncertainty; the dashed one to the uncertainty due to the

twist-4 contribution; the solid line is the combination of both.

CCFR–NuTeV collaboration at Fermilab [79]. However, only afew points forF1(x,Q2) over a limited
range ofx were extracted up to now. As discussed above, the large statistics available at theν-Factory
will in principle allow a complete separation of the variousSF components, including in particular a
measurement ofF1(x,Q2). An example of the accuracy with which the individual components will
be extracted was given in Fig. 6. This improved knowledge onF1 can be used for different purposes,
and in particular for an independent measurement ofαS. This possibility is based on the study of the
unpolarized Bjorken sum rule, which was derived in Ref. [80]. This old, but still experimentally untested
NS combination of neutrino DIS SFs, has the following form:

Sn−p
1 =

∫ 1

0
dx
[

F νn
1 (x,Q2) − F νp

1 (x,Q2)
]

, (49)

which in terms of parton distributions can be expressed as

Sn−p
1 =

∫ 1

0
dx
[

u(x,Q2) − u(x,Q2) + d(x,Q2) − d(x,Q2)
]

. (50)

Taking into account the correction ofO(αS) calculated in Ref. [81] and twist-4 terms, the theoretical
expression forSn−p

1 reads

Sn−p
1 = 1 − 2

3

αs

π
+

hBj

Q2
. (51)

The massless corrections toSn−p
1 of O(α2

S) were calculated in Ref.[82], while theO(α3
S) contributions

are analytically evaluated in Ref. [83]. The heavy-quark mass correction toSn−p
1 is known from the

calculations of Ref. [70] and is comparable with the resultsof existingO(α4
S) estimates [71].

The HT term in Eq. (51) is analogous to that of the GLS sum rule.The value ofhBj is proportional
to the matrix element of a local twist-4 operator,hBj = −(8/9)〈〈O〉〉 [73], with:

2pµ〈〈O〉〉 = 〈p|Oµ|p〉 , and Oµ = uGµνγνγ5u − dG̃µνγνγ5d , (52)

whereG̃µν = (ǫµναβ/2)Ga
αβ(λa/2). The application of the 3-point function QCD sum rules results in

the following estimate:〈〈O〉〉 = 0.15 ± 0.07 GeV2 [75], where we take for the theoretical error the
conservative estimate of 50%.

We constructed theO(αS) Q2 evolution ofSn−p
1 (see Eqs. (49),(50) using the set of parton distri-

butions of Ref. [8], and taking into account the twist-4 contribution, and estimated the theoretical error
on αS(MZ) extracted from this expression. The behaviour of the error∆αS(MZ) that can be obtained
from the measurements of theSp−n

1 integral at differentQ2 is shown in Fig. 23. This error is defined as

∆αS(MZ) = ∆Sn−p
1 (Q2)

[

dSn−p
1 (Q2)

dαS(Q2)

dαS(Q
2)

dαS(MZ)

]−1

, (53)
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where∆Sp−n
1 is the error due to the different sources of theoretical uncertainties. One of them comes

from the error in the contribution of the TMC, which is related to the uncertainty in the existing sets of
PDFs. We calculated this error using the uncertainties of PDFs from Ref. [8] and convinced ourselves
that it does not exceed 0.002 (see Fig. 23). AtO(αS) dSn−p

1 /dαS = 2/(3π), and the theoretical error due
to the HT uncertainty is(3π/2) × 0.07/Q2. For the reference scalesQ2 = 4 GeV2 andQ2 =10 GeV2,
we obtain∆HT αS(MZ) = 0.012 and∆HT αS(MZ) = 0.007, respectively. To keep a balance between
the various sources of uncertainties the corresponding statistical errors must not exceed these values.

From the theoretical point of view, the uncertainties of Eq.(53) are consistent with those of
αS(MZ) extractions from the GLS sum rule value atQ2 = 3 GeV2 [68], namely∆HT αS(MZ) = 0.003.
The latter one is a bit smaller because of the differences between the perturbative expressions for the GLS
sum rule and the unpolarized Bjorken sum rule, and between the estimates of the twist-4 contributions
to these sum rules. It is therefore rather important to checkthe results for the high-twist contributions
to Sn−p

1 obtained in Ref. [75]. Within the framework of the instantonmodel this question is now under
study3.

The experimental determination of the Bjorken unpolarizedsum rule, which will be possible at
theν-Factory, can therefore be considered as an additional source for the determination ofαS, provided
the twist-4 contributions are known with more precision.

Preciseν-Factory data onF1(x,Q2) will also allow the measurement of thex-dependence of the
HT contribution toF1, which in the IRR model of Ref. [58] is predicted to coincide with the shape
of the twist-4 contributions toxF3. In view of the considerable interest given to the analysis of the
contributions of HT terms to different quantities, it is quite desirable to study this prediction in detail,
using the experimental data forF1.

To conclude this section we note that the measurement of the unpolarized Bjorken sum rule re-
quires the extraction ofF νp

1 (x,Q2) from DIS on a hydrogen target and ofF νn
1 (x,Q2) from DIS on a

deuterium target. The latter process necessitates the analysis of nuclear corrections, especially in the
small-x region. A detailed study of these problems, as well as the discussion of other experimental
alternatives, will be discussed in the next section.

6 NUCLEAR EFFECTS IN DIS AT THE ν-Factory

There are two general motivations to study nuclear effects in DIS experiments at theν-Factory. First,
nuclear physics of parton distributions is of interest in itself, and the comparison of heavy-target data
with hydrogen and light-nuclei data (e.g. deuterium) may give us new insights into the structure of
multi-quark systems. On the other side, an accurate knowledge of nuclear effects is necessary in order to
extract the SFs of a physical proton and neutron from nucleardata. This applies in the first place to the
neutron, since available neutron targets are mainly nuclei. Theoretical studies of nuclear effects, among
other possible applications, could also help in choosing the most appropriate neutron target.

DIS from different nuclear targets has been studied with electromagneticµ/e probes at CERN,
SLAC, and FNAL (for a recent review and references, see [84, 85]). It was observed that heavy-target
SFs differ substantially from those of light nuclei in a widekinematical region ofx andQ2. Figure 24
presents a compilation of data on the so-called EMC ratio (a traditional measure of the magnitude of
nuclear effects in DIS),FA

2 /FD
2 , whereFA

2 andFD
2 are the SFs per nucleon of a nucleus with mass

numberA and of deuterium, respectively. One passes through severaldistinct regions with characteristic
nuclear effects when going from small to largex. At x < 0.1 one observes a systematic reduction of
the nuclear SFs, the so-called nuclear shadowing. This is illustrated in the right-hand panel of Fig. 24,
showing the EMC ratios on a logarithmic scale. A small enhancement appears there at0.1 < x < 0.3,
followed by a dip at0.3 < x < 0.8, which is usually referred to as the ‘EMC effect’, and finallyan
enhancement, which is associated with nuclear Fermi motion.

3C. Weiss, private communication.
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Fig. 24: Thex dependence of heavy-target/deuteron SFs ratio as measuredin DIS of muons and electrons off various nuclear

targets and averaged overQ2. The left panel shows data from CERN and SLAC for different nuclear targets. The right panel

focuses on the region of smallx and illustrates nuclear shadowing effect. Data points are from NMC [86], BCDMS [87], SLAC

[88] and and FNAL (E665 collaboration [89]) with only statistical errors shown. Nuclear targets are specified in the brackets

on the plot legends.

Experimental information about nuclear effects in other DIS observables, such as the ratio of
longitudinal to transverse cross sections or the spin SFg1, is available but scarse. We note also that DIS
off nuclear targets is characterized by additional (new) SFs, which do not appear in DIS off an isolated
nucleon. As an example we refer to the tensor SFb1, which is specific for spin-1 targets and appears in
DIS on deuterium (for a review and references see for instance [85]).

6.1 Nuclear shadowing

Before we turn to the discussion of the DIS regime, it is useful to discuss the low-Q2 region away from
scaling. Here the behaviour of neutrino cross sections (SFs) is quite different from that of charged lep-
tons. For the latter it is well known that the longitudinal SFFL, as well asF2, vanish at lowQ2, because
of electromagnetic current conservation. It was shown longago by Adler that, at lowQ2, CC neutrino
interactions are dominated by the axial current, and neutrino cross sections can be expressed through
PCAC in terms of pion cross sections [90]. In contrast to charged-lepton scattering,F ν

L is finite, domi-
nated by a pion pole forQ2 at the pion mass scale, and drives the neutrino cross sectionin this region.
Using the Adler relation, Bell predicted nuclear-shadowing effects for neutrino scattering similar to what
is observed in pion–nucleus interactions [91]. Going to largerQ2 brings a finite contribution from vector
and axial-vector meson states, which have been discussed interms of an extension of the vector meson
dominance model to vector and axial-vector currents [92, 93]. Charged-current neutrino interactions
with nuclear targets were studied in bubble-chamber experiments [94], where nuclear shadowing was
observed at lowQ2.

Most of the attempts to understand nuclear shadowing are based on the space-time picture of DIS
at smallx in the target rest frame, where DIS is viewed as the process ofinteraction of the partonic (or
hadronic) component of the exchangedγ∗ or W ∗ with the target. At smallx the typical propagation
length of those states exceeds the average distance betweenbound nucleons, and coherent effects in
the propagation of partons through the nuclear medium are important. Nuclear shadowing is usually
explained by multiple-scattering effects from bound nucleons [85].

Nuclear shadowing inF ν
2 was calculated for both low and highQ2 regimes in terms of two differ-

ent models in [95] in an attempt to match muon (NMC) and neutrino (CCFR), data [39] onF2 at small
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x. 4 It was found that nuclear shadowing inF ν
2 is similar (though slightly smaller in magnitude) to that

observed in muon-induced reactions.

At largeQ2 in the scaling regime both charged-lepton and neutrino-induced reactions are described
by universal parton distributions. Some observations on nuclear modifications of different combinations
of parton distributions can be made from existing charged-lepton DIS and Drell–Yan data. Phenomeno-
logical constraints on the behaviour of nuclear sea and valence quarks at smallx were discussed in
[100, 101, 102]. Explicit evaluations of nuclear effects insinglet and non-singlet combinations of parton
distributions were performed in [103], where nuclear shadowing for F ν

2 andxF3 was studied in terms of
the non-perturbative parton model of [104], which was extended and applied to nuclear targets in [105].
It was found that, while the shadowing effect in neutrinoF2 is similar to the corresponding effect in
charged-lepton DIS, the nuclear shadowing forxF3 is enhanced with respect to that forF2 in the region
of smallx < 0.01 (see Fig. 25). It was argued in [103] that the underlying reason for the enhancement
of nuclear shadowing forxF3 is its negativeC-parity. In the small-x region,xF3 is determined by the
difference of effective quark and antiquark cross sections, and it is known from the multiple-scattering
theory that the double-scattering correction to the difference of the cross sections is up to a factor of 2
larger than the corresponding correction to their sum.
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Fig. 25: The ratios of a heavy target to the free nucleon SFsR2 = F A
2 /F N

2 andR3 = F A
3 /F N

3 calculated for the56Fe nucleus

in the region of smallx atQ2 = 10 GeV2 [103]

We note in this respect that a similar enhancement of nuclearshadowing was predicted for the spin
SFg1 (see discussion in [85]), which involves the differences ofquark and antiquark distributions with
helicities parallel and antiparallel with respect to the helicity of the target.

6.2 Nuclear effects at largex

The physics mechanisms that generate characteristic nuclear effects at largex are quite different from
those that govern nuclear shadowing at smallx. At largex the typical DIS time scale in the laboratory
reference frame is small with respect to an average distancebetween bound nucleons. This allows us to
assume that nuclear DIS is dominated by incoherent scattering from bound nucleons. It was found long

4This disagreement has recently been resolved by CCFR/NuTeV[96] who employed, among other things, a proper treatment
of the charm mass threshold effects [97, 7]. The ratio of the newF2 values measured inνµ andµ scattering is now in agreement
with the NLO predictions, which use the massive charm production scheme [98] implemented in the MRST parton distributions
set [99].
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ago that major nuclear effects here are due to nuclear binding [105, 106, 107], which leads to a depletion
of nuclear SFs atx ∼ 0.5, and to the Fermi motion [108], which is responsible for the enhancement at
x > 0.7. These effects explain the bulk of the observed behaviour ofnuclear SFs atx > 0.2, though
detailed understanding of this region is far from complete and further studies of the reaction mechanism
are required.

It is quite important to separate nuclear effects in a QCD analysis of neutrino data. As an example
we refer to the recent analysis of higher-twist terms in the CCFR data on thexF3 SF [109]. The theoreti-
cal and experimental situation becomes less clear when going to the region ofx close to 1. Here we enter
into the resonance region, and the notion of twist expansionbecomes less well defined. Nuclear effects
in SFs are essential in this region, because the nucleon inelastic SFs must vanish asx → 1. The impact
of nuclear effects on HT terms inxF3 was studied in [109], where it was shown that the consideration
of nuclear effects at largex somewhat decreases the magnitude of dynamical HT terms extracted from
CCFR data on iron target. However, the results of calculations of nuclear corrections are sensitive to the
details of the nuclear structure input, e.g. the behaviour of the nuclear spectral function in the region
of high excitation energy of the residual nuclear system, which are not known yet. In order to minimize
uncertainties associated with nuclear effects, it is desirable to use light nuclear targets in the experiments
at theν-Factory.

We note also that nuclear SFs can extend beyondx = 1, the kinematical limit for scattering from
a free nucleon. Events withx > 1 have indeed been observed forF2 in µ DIS from a carbon target by
the BCDMS collaboration [110] and recently by the CCFR collaboration in neutrino DIS from an iron
target [111]. It is rather interesting to search for similarevents at theν-Factory, where the statistics will
be much higher.

The region of largex will be explored in more detail in electron scattering experiments at Jefferson
Lab. However the experiments at theν-Factory at largex with different nuclear targets are challenging
and could significantly contribute to the field by providing adirect measurement of the EMC effect for
different parton combinations, such as theC-evenF2 andC-oddxF3.

6.3 Nuclear effects in DIS sum rules

As discussed in Section 5.2, the GLS sum rule is a convenient tool to extractαS from neutrino data.
Neutrino data are usually collected on heavy nuclear targets; therefore, it is of importance to separate
contributions to the GLS integral associated with nuclear effects. We denoteSA

GLS = SN
GLS + δSGLS,

whereSA
GLS andSN

GLS are the GLS integral for the nucleus ofA nucleons and the isoscalar nucleon
respectively, andδSGLS accumulates corrections due to nuclear effects. There is a number of effects
that can contribute toδSGLS. Contributions due to nuclear binding, Fermi motion and off-shell effects
were discussed in [112]. It was found that these effects cancel out in the leading twist, and a tiny
correction appears as a higher twist. For example,δSFe

GLS = −1.2 × 10−2GeV2/Q2 and δSD
GLS =

−1.9× 10−3GeV2/Q2 for the iron and deuterium nuclei respectively. These quantities are more than an
order of magnitude smaller than the corresponding QCD powercorrection estimated in [75]. However,
as was discussed in [103], nuclear shadowing gives a finite and rather large negative correction already in
the leading twist. In particular, a∼ 4% renormalization of the GLS sum rule due to nuclear shadowing
was found for the56Fe nucleus,δshSGLS/S

N
GLS = −0.035, atQ2 = 10 GeV2.

At this point we must mention that it is usually believed thatthe GLS sum rule is not renormalized
by nuclear effects in the leading in1/Q2 order, since to this order the GLS integral counts the baryon
number of the target. However, a negative sign of the shadowing correction is also a generic feature
of multiple scattering theory. It is therefore challengingto look for a dynamical mechanism that would
compensate a negative nuclear shadowing correction in the GLS sum rule. Certainly more work is needed
to clarify the status of the GLS sum rule, as well as other DIS sum rules, in nuclear targets.

The Bjorken sum rule for the non-singlet combination of the neutrino SFsF1 was discussed in Sec-
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tion 5.3 as an alternative tool to extractαS. Neutron data are necessary in order to measure this sum rule,
and it is clear that, since there exists no free neutron target, nuclear data have to be used. Combined hy-
drogen and deuterium data are usually used as a source of information about the neutron. The integrated
difference between the hydrogen and the deuteron SF could then be used to extractSd−p

1 = Sn−p
1 + δS1,

where the last term incorporates nuclear effects. Using themethod described in [112], it can be shown
that the corrections due to nuclear binding and Fermi motioncancel out in the leading twist, similar to the
GLS sum rule, and the corresponding power1/Q2 correction is small, of the same order of magnitude
as in the GLS sum rule.

Note also that the deuteron nucleus, in spite of a weak binding, might not be a perfect source of
information about neutron SFs, especially at very large or very smallx. It was emphasized recently that
DIS experiments with mirror3He and3H nuclei, which form an isotopic doublet, could give information
about the neutron SF practically free from contamination from nuclear effects [113]. We then suggest
that the direct measurement of the differenceS1(

3He)−S1(
3H) could be a better source for the Bjorken

sum rule than the corresponding hydrogen–deuterium difference. The calculation of corrections to the
Bjorken sum rule, as well as to the more fundumental Adler sumrule, due to meson-exchange currents
in nuclei and nuclear shadowing, is under way5.

In summary we note that because of a larger number of observables, which can be accessed with
ν andν̄ beams, DIS studies at theν-Factory can give unique information about the structure ofhadrons
and nuclei, information that is not accessible withµ/e machines. In particular, a unique opportunity
offered by theν-Factory is a direct measurement of nuclear sea and valence quarks distributions in a
wide kinematical region.

7 ELECTROWEAK STUDIES AT THE ν-FACTORY

Experiments withνe− andνN have played a fundamental role in establishing the SM. Before the start
of LEP, the best determinations of the electroweak mixing angle came from neutrino experiments, and
even now the results from neutrino DIS at NuTeV play an important role in global analyses.

The characteristics of aν-Factory are such that very precise tests of the SM and its extensions
may be possible from neutrino–electron scattering and neutrino induced DIS. As a first approximation,
the information available from these experiments can be parametrized in terms of the uncertainty in the
determination of the sine of the Weinberg angle,s2

W ≡ sin2 θW . In fact, radiative corrections enter the
two processes in different ways and one should look at these experiments as complementary measure-
ments, akin to the present determinations ofsin2 θℓ

eff andMW at e+e− and hadron colliders. Moreover,
a very precise low-energy determination ofs2

W would test a different variety of new-physics scenarios
than usual colliders.

7.1 νe− scattering

νe− scattering provides a particularly clean probe of the electroweak coupling. There are several pro-
cesses which contribute at aν-Factory:

(NC) νµe−→ νµe− , ν̄µe−→ ν̄µe− , (54)

(NC + CC) νee
−→ νee

− , ν̄ee
−→ ν̄ee

−, ν̄µµ− , . . . , (55)

(CC) νµe−→ νeµ
− . (56)

Events originated byνµ or ν̄e in aµ− beam without a muon in the final state cannot be disentangled at a
ν-Factory and must be considered together.

5S.A. Kulagin, work in progress. During the course of writingthis report we learned about the paper [114], where the
nuclear shadowing corrections to the Gottfried sum rule for3He− 3H mirror nuclei were discussed.
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In the case ofνe−→ νe− processes, numerical values for the total cross sections are given by

σ(νe−→ νe−) = 1.72 × 10−41cm−2 × Eν [GeV] ×
[

g2
L +

1

3
g2
R

]

, (57)

wheregL,R = s2
W or gL,R = ±1/2 + s2

W according to the process.

Despite the very small cross section, the use of a 2 ton dedicated, fully active target–detector made
of liquid CH4 [3] or of a 20 ton liquid argon [4] time projection chamber should provide around 107 νe
events/year with aµ+ beam and about half of it with aµ− beam. In this subsection we use default beam
specifications, a 20 cm detector radius,s2

W = 0.2314, and
∫

Ldt = 8.6 × 1046 cm−2.

The signal is a forward electron track with no hadronic activity and energy above a thresholdEmin.
The transverse momentum of the outcoming electron is very small, pt ∼

√
meEν . In the configuration

considered here the transverse momentum due to the intrinsic divergence of the beam is even smaller. The
main source of background is quasi-elasticνeN scattering, which can also produce a forward electron,
but is characterized bypt ∼ √

mNEν and can be distinguished if thept resolution of the detector is
good. The signal-to-background ratio is expected to be better than 5 at a 50 GeVν-Factory [4], leading
to a minor dilution of the sensitivities considered below. The µ− beam has the advantage that quasi-
elasticνeN scattering produces positrons instead of electrons, so that this source of background can be
removed.

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

δs
2 w

 [1
0−4

]

(a)   Emin(e-)  [GeV]

µ- beam
µ+ beam

optimal µ- beam

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

δs
2 w

 [1
0−4

]

(b)   Emin(e-)  [GeV]

µ-: dL/L=1,5,10 10-4

µ+: dL/L=1,5,10 10-4

Fig. 26: (a) statistical uncertainty (in units10−4) in the extraction ofsin2 θW from νe scattering as a function of the minimum

electron energy. (b) impact of luminosity measurement at the level of10−3, 510−4, 110−4 on the samesin2 θW sensitivities.

The statistical sensitivity tos2
W is shown in Fig. 26a as a function ofEmin for the µ− andµ+

beams. When only integrated cross sections are considered,the µ+ beam allows for a superiors2
W

resolution, very close to 1×10−4, while theµ− beam is much less sensitive because of a cancellation
among different terms. Assuming that a measurement of the outgoing electron energyEe is possible, one
can study theEe dependence and achieve a better resolution in theµ− case,δs2

W ≈ 2 × 10−4. This is
close to having an optimal observable. For smallEmin, the sensitivity is a mild function of the threshold
energy.

A significant problem inνe scattering is the normalization of the cross sections. As can be seen
from Fig. 26b, in order to preserve the statistical sensitivity one would need a luminosity determination
at the level of 10−4. The goal at aν-Factory would be to reach a precision on the flux of10−3; this,
however, seems inadequate. A realistic possibility is to normalize theνe rate toνµ−, namely to the
muon regeneration process (see Eqs. (55),(56)), which occurs for Eν > m2

µ/2me = 10.8 GeV with
cross sections given by

dσ

dy
(ν̄ee

−→µ−ν̄µ) =
G2

µ

π
s(1 − y)

(

1 − y +
m2

µ

s

)

;
dσ

dy
(νµe−→µ−νe) =

G2
µ

π

(

s − m2
µ

)

. (58)
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Again, the background fromνµN scattering should be considered, but it can be drastically reduced by
a cut on the transverse momentum [3]. This mechanism could provide a normalization accuracy of
3.6 × 10−4, but would be available only for theµ− beam. On the other hand, it could serve to calibrate
different luminosity measurements.

We have also investigated the case in which the muon beams arepolarized and concluded that
muon polarization would not add significantly to the electroweak measurement. At best, polarization
asymmetries could help overcome the normalization problem. With 70% polarized muon beams the
statistical error isδs2

W ≈ 3 × 10−4 for theµ− beam, and worse for theµ+ beam. On the other hand,
uncertainties in the polarization of theµ beam do affect the final precision. In order to maintain the final
precision at the level ofδs2

W ≈ 10−4, it is necessary to know the polarization of the muons to 0.05% or
better. For this reason precision electroweak measurements require a storage ring design that minimizes
these uncertainties.

From the theoretical point of view, all one-loop QED and electroweak corrections are known
[115] and could be easily implemented. The uncertainty fromhigher-order electroweak corrections can
be certainly brought belowδs2

W = 1× 10−4 [116]. QED corrections to thee−, µ− spectra are relatively
important and may need consideration of some higher order effect. A major theoretical uncertainty is
likely to come from the hadronic contribution to theγ–Z0 amplitude, which must be calculated at the
relevantQ2 ≈ 10−3[GeV]Eν , a region where perturbation theory cannot be applied. The problem is
analogous to — but should not be confused with — the one of the hadronic contribution to the running
of the electromagnetic coupling,∆αhadr, which enters most electroweak tests.∆αhadr is needed to
relate the fine-structure constantα(q2 = 0) to α(M2

Z), which is relevant at theZ0 pole and for the
electroweak corrections to muon decay as well as for low-energy NCs. The latter, however, have an
additional sensitivity to hadronic loops in theγ–Z0 mixing. This contribution can be calculated from
e+e− data using dispersion relations, SU(3) flavour symmetry, and perturbative QCD. The most recent
estimate [117] leads toδs2

W = 5 × 10−4. In view of recent progress [118], this can probably be reduced
by a factor of 2 or more. However, the use of SU(3) flavour symmetry implies a sizeable ambiguity,
which cannot be resolved by better data only. For what concerns the uncertainty in∆αhadr, it should
not be considered a limiting factor for this experiment, as it affects in the same way most electroweak
observables. Moreover, there has been and there will be progress in its determination, and it is likely to
play a lesser role than the uncertainty from theγ–Z0 mixing in νe scattering.

In conclusion, a total uncertainty ons2
W of about2×10−4 is probably achievable at aν-Factory, in

the case where high-performance detectors are available, the polarization of the muons can be controlled
very precisely, and progress is achieved in estimating the hadronic effects. Higher precision would
require a substantial increase in luminosity as well as major theoretical improvements, mainly in hadronic
physics.

7.2 sin2 θW from DIS

Current electroweak analyses ofνN DIS (at NuTeV) are based on the Paschos–Wolfenstein (PW) rela-
tion,

R− =
σNC(νµ) − σNC(ν̄µ)

σCC(νµ) − σCC(ν̄µ)
=

1

2
− s2

W , (59)

which is designed to isolate theu, d valence quark contributions that cancel out in the ratio andis there-
fore quite insensitive to the hadron structure. On the basisof about 1.3 (0.3) millionνµ (ν̄µ) events,
NuTeV has found [119]

s2
W (OS) = 0.2253 ± 0.0019(stat) ± 0.0010(syst) ± 0.00025(Mt) + 0.0005 ln

MH

150GeV
. (60)

As can be seen, if the on-shell definitions2
W (OS) ≡ 1 − M2

W /M2
Z is used, the indirect dependence

of the result on the top and Higgs masses through radiative corrections to Eq. (61) is relatively small.
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Observable Stat. error PDF

Rµ−
0.4 ∼ 12

Rµ+
0.5 ∼ 15

Rµ− − 0.8Rµ+
2.2 ∼ 2

P 4.9 ∼ 4

Table 3: Uncertainties on thes2
W determination from different observables inν DIS in units10−4 (see text).

This is why the NuTeV result is often presented as anMW determination withδMW ≈ 130 MeV. This
interpretation can be highly misleading when the experimental accuracy reachesO(10−4).

At a ν-Factory, a striking improvement of the statistical error can be expected, as well as the
elimination of the main systematic problems of NuTeV (uncontrolled νe beam contamination and NC
event identification). Whether the finals2

W sensitivity may reach the level of10−4 or δMW ≈ 5 MeV
depends, however, on many different factors.

If the detector can identify primarye± in the final state, the CC events originated by electron
neutrinos can be distinguished from NC events. One can then consider ratios of NC/CC total cross
sections [3]

Rµ−

=
σNC(νµ) + σNC(ν̄e)

σCC(νµ) + σCC(ν̄e)
; Rµ+

=
σNC(ν̄µ) + σNC(νe)

σCC(ν̄µ) + σCC(νe)
(61)

Using our default beam specifications andElept > 3 GeV, Eh > 1 GeV, s2
W ≡ sin2 θW = 0.225, we

find Rµ− ≈ Rµ+
= 0.36. Also thes2

W sensitivity of the two beams is very similar,dR/ds2
W ≈ −0.5.

Because of the109 CC and3 × 108 NC events available for each beam, the statistical error on thes2
W

determination from Eq. (59) is negligible, as shown in Table3. However, one should take into account
thatRµ±

have a higher sensitivity to hadronic physics than the PW relation. As an illustration, we show
in Table 3 the sensitivity of thes2

W determinations fromRµ±
on present PDFs. The values are obtained

by comparing results forRµ±
for which different sets of the CTEQ5 PDFs [6] (sets m, d, and hq) have

been employed. They are the result of a LO analysis based on present day information. Clearly, future
improvements in our knowledge of the hadron structure at theν-Factory and elsewhere, as well as a full
NLO implementation of QCD radiative corrections will lowerthis uncertainty, but it seems unlikely that
they will bring it down to the level of the statistical error.

On the other hand, the PW relation is formally recovered in the combination

(1 + g r)Rµ− − (r + g)Rµ+
, (62)

whereg = 〈Eν̄e〉/〈Eνµ〉 = 0.857 takes into account the different mean energy of the neutrinoand
antineutrino beams,r = σCC(ν̄)/σCC(ν), and lepton universality has been used. Unfortunately, because
of the numerical closeness ofRµ−

andRµ+
, this combination is not an efficient probe. Moreover thes2

W

sensitivities ofRµ±
are also very similar and the improvement in the PDF sensitivity is paid for by the

lower statistical sensitivity. One possibility is to fit a parameterα in Rµ− − αRµ+
in order to minimize

the overalls2
W uncertainty. For instance,α ≈ 0.8 leads toδs2

W (PDF) ≈ δs2
W (stat) ≈ 0.0002.

Of course, one can construct other ratios of cross sections,also combining the cross sections of the
two beams in a way similar to Eq. (59); however, they tend to beless sensitive tos2

W and/or to depend
even more thanRµ±

on the hadronic structure. A possible exception could be thequantity

P =
σNC(µ−) − σNC(µ+)

σCC(µ−) − σCC(µ+)
, (63)

which is modelled on the PW relation and has indeed a lower sensitivity on hadronic physics (see Ta-
ble 3). However, this observable is penalized by a lowers2

W resolution and requires the knowledge of
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the ratioσCC(µ+)/σCC(µ−) — and therefore of the relative normalization of the two beams — to better
than10−4.

These high-precision measurements cannot be carried out without a high-performance tracking
target. The detector and beam requirements based on Eqs. (61) have been discussed in [3]. The main ones
are high electron/muon detection efficiency, good primary lepton identification, and precise momentum
and energy measurements. A rough estimate [3] of the corresponding uncertainties isδs2

W ≈ 2 × 10−4.
The ability to have bothµ+ andµ− beams would be an important asset, as it would allow the use of
Eq. (62).

From a theoretical point of view, it will be necessary to implement full NLO QCD and QED
corrections, to incorporate possibly complete two-loop electroweak corrections, to assess the importance
of higher twists, and to take into account charm production corrections. This is to be contrasted with the
obsolete and incomplete implementation of QCD and electroweak corrections of the NuTeV analysis.
On the other hand, almost all theoretical tools are in principle already available, including the dominant
two–loop weak corrections [116]. Charm production, in particular, is likely to be a significant source of
uncertainty; it accounts for about 3% of the total CC cross section and therefore even a 1% error on the
overall charm yield would induce a10−4 uncertainty onRµ±

or δs2
W ≈ 2 × 10−4. An extrapolation

from the CCFR measurements suggestsδs2
W ∼ 0.0003 [3].

If the outcoming electrons cannot be resolved and CC events initiated by electron neutrinos are
considered as NC events — a situation analogous to present-day νN experiments — the only observable
for theµ− beam is

R̂µ−

=
σNC(νµ) + σNC(ν̄e) + σCC(ν̄e)

σCC(νµ)
. (64)

This observable and the analogous one for theµ+ beam have a marginally lower statistical sensitivity
and a much higher dependence on the SFs,δs2

W > 0.02, thanRµ±
.

In conclusion, efficient electron identification seems to becrucial for a very precise determination
of s2

W at theν-Factory . The statistical uncertainties are likely to be negligible in comparison with
theoretical and experimental systematic errors, which in turn are difficult to estimate at the moment.
Before a realistic assessment of the potential ofν DIS at aν-Factory for precision electroweak tests is
possible, several systematics will have to be understood; most importantly the precision of theν-Factory
measurement of the unpolarized SFs, primary lepton identification, isospin–violating effects and charm
production.

7.3 New physics through radiative corrections

The very precise determination of the electroweak mixing angle fromνe andνN scattering at aν-Factory
would test the SM at a level competitive with LEP, SLD and Tevatron measurements. Experiments at
the front end of a muon storage ring could therefore severelyconstrain many extensions of the SM,
which potentially affect the SM predictions for neutrino scattering through virtual contributions. If the
new physics is characterized by a high mass scale and it affects dominantly the two-point functions, its
contributions can be parametrized in a model independent way by theS, T, U amplitudes introduced in
[120]. Similar strategies have been presented by a number ofauthors (see for instance [121]). Many
models of physics beyond the SM can be studied at least approximately in this simple way.

We useMH ≈ 100 GeV andŝ2
W = sin2 θW (MZ)MS = 0.2315 as reference SM values and set

g = 〈Eν̄e〉/〈Eνµ〉 = 0.857. As far asνe scattering is concerned, in the case of theµ− beam we can
consider the ratio of electron- and muon-production total cross sections

r− =
σ(νe−)

σ(νµ−)
. (65)

Virtual effects parametrized byS, T , andU shift the measured value ofr with respect to the SM predic-
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tion r0 by
r− = r−0 (1 + 0.0055S + 0.0004T ) . (66)

This observable is therefore very insensitive to the isospin breaking parameterT , similarly to the weak
charge in atomic parity violation experiments with cesium.It could allow for a very accurate determi-
nation of the isospin conserving parameterS, within ±0.1; this is roughly the accuracy of the present
global fit (see Ref. [122], p.105). A similar observable can be constructed for theµ+ beam, provided the
luminosity determination is based on a CC process analogousto muon production. In this case the shift
is

r+ = r+
0 (1 + 0.0111S − 0.0100T ) , (67)

and implies a very different constraint in the(S, T ) plane. Finally, the measured value of the Paschos–
Wolfenstein relation (59) is affected by the oblique parameters according to

R− = R−
0 (1 − 0.0136S + 0.0253T ) (68)

The differentνe and νN measurements would therefore provide complementary constraints on new
physics.

8 STUDIES WITH HEAVY QUARKS

As has been pointed out in the past, and as shown in a previous section, theν-Factory can be seen as
a νDIS charm factory. A comprehensive review of the possible physics goals of such a facility can be
found in Ref. [3]. Here we shall explore in quantitative detail some interesting example, drawing from
the expertise available within the Working Group. In particular we shall focus on two aspects of charm
production in neutrino interactions: low-multiplicity processes such as the diffractiveDs and the quasi-
elastic charmed-baryon production. We shall show that these processes allow a clear identification of the
charmed hadron, and therefore a very good estimate of absolute decay branching ratios. Together with
low systematic errors, these measurements can provide, forinstance, a precise measurement offDs .

In the following we consider nuclear emulsions both as neutrino target and tracking device. It is
worth stressing that the use of nuclear emulsions is limitedby the overlapping of interactions. A density
of interactions of about20 per cm3 is reasonable. On the other hand,107 νµ interactions are needed for
the measurements we will discuss in the following. Such a statistics could be obtained by running the
machine at low luminosity and taking data for a few years (months) whether the experiment is located
far from (O(1 km)) or close to (O(100 m)) the neutrino source.

Our simulations include realistic estimates of the experimental efficiencies and systematics. It is
important to point out, however, that the methods discussedbelow can be used by electronic experiments
with a very good vertex detector as well, although with different efficiencies and backgrounds.

8.1 Direct evaluation of theΛ+
c branching ratios

8.1.1 Model-independent extraction ofBR(Λ+
c → pK−π+)

So far, only model-dependent extractions ofΛ+
c branching ratios have been obtained, see [122]. A

method, based on the neutrino quasi-elastic charm production, for a model-independent determination of
most of theΛ+

c branching ratios has been proposed in Ref. [123]. So far, twodifferent methods to extract
Λ+

c branching ratios have been used [122]. As discussed in Ref. [122] they rely on different theoretical
assumptions onB physics, namely theB branching ratios toΛc, and give results that are not in quite a
good agreement. Therefore, a model-independent determination of Λ+

c branching ratios would provide
a better theoretical understanding of the baryonicb-decays. For a detailed discussion of this method, see
Ref. [123].
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σ(10−40 cm2)\ Model F.R. [124] S.L. [125] A.K.K. [126, 127, 128] A.G.Y.O. [129] K. [130]

νµp → µ−Σ++
c 0.2(0.030%) 9.0(1.3%) 8.0(1.2%) 1.0(0.15%) 3.0(0.45%)

νµp → µ−Σ∗++
c 0.6(0.089%) 16.0(2.4%) 10.0(1.5%) 0.6(0.089%) -

νµn → µ−Λ+
c 1.0(0.15%) 23.0(3.4%) 41.0(6.1%) 3.0(0.45%) 5.0(0.74%)

νµn → µ−Σ+
c 0.1(0.015%) 5.0(0.74%) - 0.6(0.089%) 1.5(0.22%)

νµn → µ−Σ∗+
c 0.3(0.045%) 8.0(1.2%) - 0.3(0.045%) -

Total 2.2(0.33%) 61.0(9.0%) 59.0(8.9%) 5.5(0.82%) 9.5(1.41%)

Table 4: Predicted quasi-elastic charm-production cross section assuming a neutrino energy of10 GeV. In brackets the quasi-

elastic charm rate with respect to deep-inelastic interactions is given.

Experiment σ
Σ

++
c

σ
Σ

∗++
c

σ
Λ

+
c

(σ
Λ

+
c

+ σ
Σ

+
c

+ σ
Σ

∗+
c

) (σ
Σ

++
c

+ σ
Σ

∗++
c

)

(10−40 cm2) (10−40 cm2) (10−40 cm2) (10−40 cm2) (10−40 cm2)

[131] (2.3+2.7
−1.6)

[132] (2.3 ± 2.0) (4.5 ± 4.0)

[133] (0.9+0.9
−0.7)

[134] (3.7+3.7
−2.3)

[135] (38.3 ± 23.1) < 8.8

Average (2.3 ± 1.5) (4.5 ± 4.0) (1.1 ± 0.8) (38.3 ± 23.1) < 8.8

Table 5: Summary of the experimental measurements of quasi-elastic charm-production cross sections.

8.1.2 Present knowledge, theoretical and experimental, ofneutrino quasi-elastic charm production

The simplest exclusive charm-production reaction is the quasi-elastic process where ad valence quark
is changed into ac quark, thus transforming the target nucleon into a charmed baryon. Explicitly, the
quasi-elastic reactions are

νµn → µ−Λ+
c (2285) , νµn → µ−Σ+

c (2455) , νµn → µ−Σ∗+
c (2520) , (69)

νµp → µ−Σ++
c (2455) , νµp → µ−Σ∗++

c (2520) . (70)

For a detailed theoretical review of neutrino quasi-elastic charm production, see Refs.[124]–[130].

The predicted cross sections, assuming a neutrino energy of10 GeV and according to different
authors, are shown in Table 4. As we can see, these predictions can even differ by one order of magnitude.
If we express the total quasi-elastic charm production ratewith respect to deep-inelastic CC interactions,
it ranges from0.33% to 9.0% (see Table 4). From Fig. 3 of Refs. [125] and [130] we note thatthe total
cross section in both models is almost flat for neutrino energies above8 GeV.

The statistics of neutrino quasi-elastic charm events collected by bubble chamber and emulsion
experiments is rather poor. The measured cross sections, obtained by a reanalysis that uses the latest
results onΛ+

c branching ratios [122], are shown in Table 5. Despite the large statistical error, these
measurements are clearly inconsistent with the predictions of Refs. [125]–[128], while the agreement is
fair for the ones in Refs. [124, 129, 130]. The average value of the cross sections predicted by Refs. [124,
129, 130] has been used to get a rough estimate of the expectednumber of events, given in Table 6.

8.1.3 Description of the method

The method consists in identifying theΛc by means of the peculiar topology of the quasi-elastic reaction.
As shown in Fig. 27, the only charged particles produced in this process are the muon and the short-lived
particle (Λc) except for the reaction Fig. 27c) where an additionalπ is produced. Therefore there is only
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Reaction σ(10−39 cm2) R(%) Expected events

νµp → µ−Σ++
c 0.14 0.14 14000

νµp → µ−Σ∗++
c 0.06 0.06 6000

νµn → µ−Λ+
c 0.3 0.3 30000

νµn → µ−Σ+
c 0.07 0.07 7000

νµn → µ−Σ∗+
c 0.03 0.03 3000

All 0.6 0.6 60000

Table 6: Quasi-elastic charm-production cross section andits contribution to the total CC neutrino cross section. Thelast

column shows the expected number of events, assuming a starting sample of107 CC neutrino-induced events.

a small contamination of these events from deep-inelastic charm production where a charmed hadron is
produced (faking aΛc) and the topology is quasi-elastic-like.

In this way, since we only use topological information, theΛc identification is model-independent.
The relative contamination ofD+ and D+

s from deep-inelastic events,εfake, can be dealt with as a
relative systematic error on the branching ratios. We assume the relative systematic error to beεfake +
3σfake whereσfake is the error onεfake .

The normalization to determine theΛ+
c absolute branching ratios is simply given by the number of

events with a vertex topology consistent with Fig. 27. No model-dependent information is used to define
the normalization. The little knowledge we have about the quasi-elastic charm-production cross section,
which is model-dependent unless measured, plays a role onlyin the evaluation of the deep-inelastic
contamination, namely the systematic error. In fact, in theevaluation of the contamination, the ratioR
between charm quasi-elastic and standard deep-inelastic production appears. It is worth noting that, even
if the ratioR had an uncertainty of500%6, the relative systematic error on the branching ratios would
be∼ 7.2% (see [123]).

µ

Λ+
c

µ

Λ+
c

π0

µ

Λ+
c

π+

a) b) c)

Fig. 27: Topology of the quasi-elastic neutrino-induced charm events in the case of the reactions a)νµn → µ−Λ+
c , b) νµn →

µ−Σ+
c (Σ∗+

c ) and c)νµp → µ−Σ++
c (Σ∗++

c ), with subsequentΣc decay intoΛc. The particles inside the box represent the

Λ+
c decay products.

8.1.4 Measurement accuracy

The expected accuracy on the determination of theΛ+
c branching ratios as a function of the relative error

on R, the quasi-elastic charm production cross section relative to the deep-inelastic one, is shown in
Table 7. To compute the expected number of events in each decay channel we use the central values
(shown in Table 7 together with their errors) given by the Particle Data Group [122]. From this table we

6Nevertheless, this is not the case. From Table 5 we see thatR is measured with an accuracy better than100%.
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Channel PDG BR [122] ∆BR ∆BR ∆BR

(∆R

R
= 10%) (∆R

R
= 100%) (∆R

R
= 500%)

Λ+
c → pK−π+ (5.0±1.3)% (±0.09±0.04)% (±0.09±0.09)% (±0.09±0.4)%

Λ+
c → Λµ+νµ (2.0±0.7)% (±0.06±0.01)% (±0.06±0.04)% (±0.06±0.1)%

Λ+
c → Λe+νe (2.1±0.7)% (±0.06±0.01)% (±0.06±0.04)% (±0.06±0.1)%

Table 7: Statistical and systematic accuracy achievable inthe determination of theΛ+
c absolute branching ratios, assuming a

collected statistics of107 νµ CC events, as a function of the relative error onR. The central values are taken from Ref. [122].

can see that, even assuming a very large (unrealistic) systematic error, the achievable accuracy on the
branching ratios makes the discrimination between the methods discussed in Ref. [122] still possible.

8.2 Direct evaluation ofDs branching ratios and fDs measurement

The experimental knowledge on leptonicDs decays is very little. Currently, the branching ratios for
Ds → lν decays have been estimated by the PDG [122] to beBR(Ds → µν) = (4.6 ± 1.9) × 10−3

andBR(Ds → τν) = (7± 4)× 10−2. These large uncertainties translate into a large uncertainty on the
extraction of the decay constantfDs.

A method that would allow at theν-Factory the extraction of most of theDs branching ratios,
and consequently offDs , by means of purely leptonic decays, has been proposed in Ref. [136]; the
expected accuracy would be better than5%. OncefDs will be measured with such an accuracy, one will
feel more confident about extrapolating to the decay constants in theB system,fB andfBs , which are
crucial quantities for the quantitative understanding ofB0

(s)–B̄0
(s) oscillations and the extraction ofVtd

(Vts) from them.

8.2.1 Topology of neutrino-induced diffractive charm events and background

In D
(∗)
s

7 diffractive production, only a muon is produced at the interaction point (primary vertex), besides
the charmed meson. Therefore, these events are characterized by a peculiar topology: two charged tracks
at the primary vertex, one of them being a short-lived particle.

Neutrino-induced quasi-elastic charm events are characterized by the topologies shown in Fig. 27.
Therefore, they are similar to the diffractive ones, but with a cross section twice as large. Since antineu-
trinos cannot induce quasi-elastic charm production, while diffractive production is the same for both
ν and ν̄, in the following we will consider onlȳν beams. We will then make the assumption that all
the events with the above topology are due toD

(∗)
s diffractive production. In this case we will wrongly

classify some of the charmed hadrons produced in deep-inelastic interactions.

The charm production in̄ν interactions and the event topology have been studied by using the
HERWIG event generator [137], as well as an event generator based on JETSET [138] and LEPTO [139],
assuming the energy dependence of the charm fractions reported in [140]8. The average charm fractions,
convoluted with the neutrino spectrum, areFD̄0 = 61%, FD− = 26%, FD−

s
= 7.3% andFΛ−

c
= 5.7%.

The signal kinematics has been studied by using an event generator developed within the CHORUS
Collaboration [141].

The contamination to the diffractive sample, which comes from deep-inelastic events, can be writ-
ten as

εfake =
σ(ν̄µN → µ+CX)

σ(ν̄µN → µ+X)
× 1

R̄×(FD− + FΛ−
c
) × ffake×εkin (71)

7In the following,D(∗)
s means eitherDs or D∗

s . The same notation is also used forD mesons.
8We assumed that charm fractions are equal for bothν andν̄.
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∆R̄/R̄ σfake/εfake εfake(%) εD(∗)(%)

15% 23% 0.037±0.009 3.3 ± 0.8

30% 34% 0.04±0.01 3.3 ± 0.8

50% 53% 0.04±0.02 3.3 ± 0.8

100% 101% 0.04±0.04 3.3 ± 0.8

Table 8: The relative and absolute error onεfake as a function of the relative error on̄R. In the fourth column the systematic

uncertainty due to theD(∗) contamination is reported.

where

R̄ ≡ σ(ν̄µN → µ+D
(∗)−
s N)

σ(ν̄µN → µ+X)
. (72)

We take the charm production in̄ν interaction to be3% [142]. By using the charm fractions
discussed above,(FD− + FΛ−

c
) = 31.7%. The factorffake = (6.0 ± 0.1)% is the fraction of deep-

inelastic charmed events faking the diffractive topology;εkin = (0.4 ± 0.2)% gives the efficiency of
kinematical cuts as explained in Ref. [136]. Finally we getεfake ≃ 0.04%.

The currently measured̄R has an error of about15% (see Ref. [136]), which affects the relative
error onεfake. As described in Ref. [136], a kinematical analysis allows agoodDs detection efficiency
(∼ 73%) with a small background. The expected contamination and its error are given in Table 8.

Another possible source of irreducible background is the diffractive production ofD(∗)− (see
Ref. [136]). It is suppressed by a factor|Vcs/Vcd|2 ∼ 20 and only30% of theD∗− decay into a charged
charmed meson (BR(D∗− → D−) = 0.323 ± 0.006 [122]). On the other hand, all the diffractively
producedD− are background: we assume thatD− are half of the diffractive sample9. Finally, we get
εD∗ = (3.3 ± 0.8)%.

From the numbers given above, it turns out that the little knowledge we have about the diffractive
charm production cross-section plays a role only in the evaluation of the deep-inelastic contamination,
namely a term of the systematic error. Even if the ratioR̄ had an uncertainty of100%10, the relative
systematic error on the branching ratios would be∼ 0.04% (see Table 8). We want to stress that, since
the εD(∗) contribution is dominant, the overall systematic uncertainty does not depend at all on thēR
accuracy. Writing the relative systematic error from deep-inelastic events asεfake +3σfake, whereσfake

is the error onεfake, the overall relative systematic uncertainty is

εsys =
√

(εfake + 3σfake)2 + ε2
D(∗) = (3.3 ± 0.8)% , (73)

which is dominated by theεD(∗) term.

8.2.2 Description of the method

An almost pure sample ofD−
s from diffractive events, with a small contamination ofD− andΛ−

c pro-

duced in deep-inelastic events and in diffractiveD(∗)− production, can be built by using diffractiveD(∗)
s

production from antineutrinos. The normalization to determine theDs absolute branching ratios is given
by the number of events with a vertex topology consistent with oneµ plus a short-lived particle. No
model-dependent information is used to define the normalization.

It is worth noting that the contamination ofD− andΛ−
c events does not affect theDs → τ channel.

Indeed, such events would present a unique topology with twosubsequent kinks. An event with a double
kink has been observed recently in CHORUS (see Ref. [141]).

9This assumption has been driven by the NuTev results:σ(νµN → µ−DsN) = (1.4 ± 0.3) fb/nucleon,σ(νµN →
µ−D∗

sN) = (1.6 ± 0.4) fb/nucleon [143].
10Nevertheless, this is not the case. We recall that the Big Bubble Chamber Neutrino Collaboration [144] and NuTeV [143]

combined analysis gives an accuracy of about15% for R̄.
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Channel PDG BR [122] New method

Ds → µν (4.6 ± 1.9) × 10−3 (±0.55±0.15)× 10−3

Ds → τν (7 ± 4)% (±0.17±0.23)%

Ds → φlν (2.0 ± 0.5)% (±0.08±0.07)%

Table 9: Statistical and systematic accuracy achievable inthe determination of theDs absolute branching ratios, assuming a

collected statistics of107 ν̄µ CC events. The central values are taken from Ref. [122].

8.2.3 Measurement accuracy at a neutrino factory

At present there are no experiments with both an adequate spatial resolution to fully exploit the diffractive
topology and a sufficient antineutrino-induced CC event statistics. Therefore, the method proposed in
this paper could only be exploited with the above-mentioneddetector exposed at aν-Factory.

Let us assume that107 ν̄ CC events are collected into an emulsion target and that the detection
efficiency is about73% for theDs decays. By assuming a vertex location efficiency of about50%11 and
assuming āν diffractive production rate of6.2 × 10−3/CC event, we expect to detect a number ofDs

equal toNDs = 107 × 6.2 × 10−3 × 0.73 × 0.5 ≃ 2.3 × 104.

The expected accuracy on the determination of theDs branching ratios is shown in Table 9 for a
few channels, together with the current status. To compute the expected number of events in each decay
channel we have used the central values (shown in Table 9 together with their errors) given by the Particle
Data Group [122].

As discussed in Ref. [145] the leptonic branching ratios areproportional to the decay constant.
Therefore, by using the measured branching ratios given in Table 9,fDs can be extracted. If we collect
107 ν̄µ CC interactions we getfDs = 288 ± 4(stat) ± 5(syst) MeV, where the central value is taken
from Ref. [122].

8.3 Theoretical estimates forν-induced exclusiveDs production

The observation of exclusiveDs production at theν-Factory, through the processν̄µ+N→ µ++N+D−
s ,

is also of interest for the study of the production mechanismwithin QCD and opens a new possibility to
study the nucleon structure. There exists a QCD factorization theorem [146, 147], which states that the
amplitude for hard exclusive meson-production processes can be written as a convolution of a skewed
parton distribution (SPD), a distribution amplitude, and ahard part. This theorem has recently been
applied to the investigation of electroproduction of single light mesons [148] and meson pairs [149].
Motivated by the possible implications for theν-Factory, the formalism has been extended to CC-induced
processes12. We summarize here the main results of this work, whose validity is limited to values ofQ2

large compared to−t and to the squared masses of the involved particles. The differential cross section
of the leptoproduction process is given by

dσ

dxBjdQ2dt
=

e2

4(4π)3 sin2 θW

xBj

Q2(Q2 + M2
W )2

(

1 − Q2

2xBj p · l

)

∑

s′

|T |2 , (74)

wherel is the neutrino momentum andT is the amplitude for the subprocess

W−∗

L (q) + N(p)→D−
s (q′) + N(p′) . (75)

At leading order,T is obtained from the sum of three diagrams involving a gluon SPD (Fig. 28a and
diagrams obtained by an interchange of the order of the vertices) and two diagrams with a contribution
of the (polarized and unpolarized) strange quark SPD (Fig. 28b plus one diagram with a changed order
of vertices). The relative Feynman diagrams are convolutedwith the gluon ands quark SPD and with

11This efficiency accounts for the electronic detector reconstruction and the automatic location of the event vertex inside the
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Fig. 28: Two of the five contributing diagrams.

the distribution amplitudeΦD−
s
(z) for theD−

s meson (z being the fraction of theD−
s momentum carried

by the strange quark).

For a numerical estimate of the cross section we adopt the distribution amplitude from [150]:

ΦD−
s
(z) = NDs

√

z(1 − z) exp

[

− m2
Ds

2ω2
z2
]

, (76)

whereω = 1.38GeV was obtained in [151] as the best fit for theD meson, andNDs has to be chosen to
satisfy the sum rule

∫ 1

0
dz ΦD−

s
(z) = fDs (77)

For a comparison, we shall also use the asymptotic form of theDs distribution amplitude:

ΦD−
s
(z) = 6fDsz(1 − z) . (78)

In both cases we usefDs = 270MeV, namely the average of the results obtained so far in lattice
calculations [152]. The gluon and quark SPD’s are parameterized as in [149], combining Radyushkin’s
model [147, 153] with the parameterizations of the usual (forward) parton distributions of Ref. [154].

Figure 29 shows the results obtained for the differential cross sectionsdσ/dxBj and dσ/dQ2

wheret = (p − p′)2 has been integrated over the intervaltmin = m2
Nx2

Bj/(1 − xBj) < −t < 2GeV2,
assuming for simplicity a fixed neutrino energyEν̄ = 34GeV. For the plot of thexBj-dependence
Q2 has been integrated from12GeV2 to the upper bound given by the constrainty < 1, with y :=
p · q/p · l = Q2/(2xBjp · l). The plot ofdσ/dQ2 is based on thexBj-integrated cross section, integrated
betweenxBj = 0.18 andxBj = 0.75 and taking into account the same kinematical constraint. The
solid lines correspond to the form ofΦD−

s
given in Eq. (77), while the dashed lines correspond to the

asymptotic form of Eq. (78). The dotted lines are obtained bysetting to zero the strange quark SPD,
proving the dominance of the gluon contribution, and suggesting that this process is a potential probe for
the measurement of the gluon SPD.

Integrating over all variablesQ2, xBj, andt over the same kinematical region gives a value for the
total cross section ofσ = 5.6 × 10−14 GeV−2 = 2.2 × 10−5 pb. Uncertainties of this rough estimate
result from the current limited knowledge of the SPDs, by the20% uncertainty onfDs , and by the lack
of knowledge about the exact form of the meson-distributionamplitude, as illustrated in Fig. 29. It
is worth noting, however, that experiments of the kind discussed here can provide much more precise
information on theDs decay constant independently of the exact cross section. Asdiscussed in the
previous subsection the relatively high production rate ofDs mesons allows us to determinefDs by
measuring theDs branching ratios and its total width [136]. In spite of the small cross section, the huge
integrated luminosities of

∫

Ldt > 109 pb−1 available at theν-Factory would lead to samples of the
order of104 events.

The analysis shows that the large rates, and the extendedQ2 range available, will allow a more
accurate determination of the gluon SPD and help to better test the theory of these exclusive processes.

emulsions.
12B. Lehmann-Dronke and A. Schäfer, in preparation.
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Fig. 29: The differential cross section for exclusiveD−
s production as a function ofxBj or Q2 respectively. The dotted lines

show the contribution stemming from the gluon SPD. The results obtained for the asymptotic form of the distribution amplitude

Φ
D

−

s

are plotted with dashed lines.

The available statistics may even allow a study of higher-twist corrections to the leadingQ2 behaviour,
probing the limits of the factorization theorem.

9 Λ POLARIZATION IN NEUTRINO DIS

Many experiments have reported [155]–[158] the observation of longitudinal polarization ofΛ baryons
produced in neutrino DIS on an unpolarized target. Measurements in the current fragmentation region
(CFR) give information on distribution and fragmentation functions, while measurements in the target
fragmentation region (TFR) allow to access fracture functions [159]. In both cases the measurement of
Λ polarization provides a sensitive way for studying perturbative and non-perturbative spin phenomena.

9.1 Λ polarization in the current fragmentation region

The polarization of spin 1/2 baryons inclusively produced in polarized DIS in the CFR may be useful
to obtain new information on polarized distribution and fragmentation functions. A lot of theoretical
attention has been dedicated to the self-revealing polarization of Λ’s and other hyperons [160]–[171].
Most papers, with the exception of Refs. [164], [167] and [170], do not consider weak interaction con-
tributions, since there is no available experimental information.

The NOMAD collaboration has published some interesting results [158] on theΛ polarization in
νµ CC interactions; more data, sensitive toγ/Z interference effects, might be available from high-energy
NC processes at HERA; more complete information is however only expected from experiments at the
ν-Factory.

These experiments are a unique source of new data, owing to the natural neutrino polarization and
to the selected couplings ofW ’s to pure helicity states. We will be able to study in detail processes like

ν p→ ℓ− Λ↑ + X ν̄ p→ ℓ+ Λ↑ + X (CC)

ν p→ ν Λ↑ + X ν̄ p→ ν̄ Λ↑ + X (NC)

where the protonp may or may not be polarized, depending on the experimental setup, whereas neutrinos
are obviously always polarized (λν = −1/2, λν̄ = +1/2). Notice that though the formulae we present
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here hold for proton targets, they can be easily modified intoanalogous expressions valid for polarized
and unpolarized neutrons. We consider CC and NC processes separately. The explicit expressions for the
polarization of the finalΛ’s in terms of elementary dynamics, quark distribution and fragmentation func-
tions show how these experiments can provide precious information on distribution and fragmentation
functions which are still far from being well known.

9.1.1 Charged current neutrino processes,νp→ℓΛ↑X

For the neutrino-initiated processes, the longitudinal polarizationsP[ν,ℓ] and P[ν̄,ℓ] for any spin1/2
baryonB (Λ’s andΛ̄’s for instance) produced in CC DIS processes are defined as

P[ν,ℓ](B) =
dσνp→ℓ−B+X − dσνp→ℓ−B−X

dσνp→ℓ−B+X + dσνp→ℓ−B−X
(79)

and

P[ν̄,ℓ](B) =
dσν̄p→ℓ+B+X − dσν̄p→ℓ+B−X

dσν̄p→ℓ+B+X + dσν̄p→ℓ+B−X
, (80)

whereB± denotes a baryonB with helicity ±.

In the most general case, when also the protonp is polarized – and we denote by a superscriptS
its spin state – we obtain at leading twist in the QCD factorization theorem:

P
(S)
[ν,ℓ](B) = −

∑

i,j [(dj)
(S)
− dσ̂

dj→ui

−− ∆DB/ui
− (ūi)

(S)
+ dσ̂

ūi→d̄j

−+ ∆DB/d̄j
]

∑

i,j[(dj)
(S)
− dσ̂

dj→ui

−− DB/ui
+ (ūi)

(S)
+ dσ̂

ūi→d̄j

−+ DB/d̄j
]

(81)

and

P
(S)
[ν̄,ℓ](B) = −

∑

i,j[(ui)
(S)
− dσ̂

ui→dj

+− ∆DB/dj
− (d̄j)

(S)
+ dσ̂

d̄j→ūi

++ ∆DB/ūi
]

∑

i,j[(ui)
(S)
− dσ̂

ui→dj

+− DB/dj
+ (d̄j)

(S)
+ dσ̂

d̄j→ūi

++ DB/ūi
]

, (82)

where(q)
(S)
± stands for the number density (distribution function) of quarksq with helicity ± inside a

proton with spinS, whereasq± alone will refer, as usual, to a proton with helicity +. For the flavours we
use the notationui = u, c anddj = d, s. The polarized fragmentation functions are defined in termsof
fixed-helicity fragmentation functions as

∆DB/q ≡ DB+/q+
− DB−/q+

= DB−/q− − DB+/q− , (83)

anddσ̂
dj→ui

−− stands for thedσ̂/dy cross section for the elementary interactionν dj→ℓ ui, whereν and
dj having negative helicities.

The above polarizations depend on the usual DIS variablesx, z andy; apart from theQ2 de-
pendence of distribution and fragmentation functions due to the QCD evolution, there is a kind of fac-
torization in the dependence on the three variables, in thatthe distribution functions depend onx, the
fragmentation functions onz and the SM dynamics ony. If convenient, and according to experimental
setups, numerator and denominator of Eqs. (81) and (82) can be integrated over some variables.

Performing the sum over flavours in the numerators and denominators, neglectingc-quark contri-
butions and inserting the elementary dynamics expressions, Eqs. (81) and (82) give, for longitudinally
polarized (± helicity) protons

P
(±)
[ν,ℓ](B;x, y, z) = −

[d∓ + R s∓]∆DB/u − (1 − y)2 ū± [∆DB/d̄ + R ∆DB/s̄]

[d∓ + R s∓]DB/u + (1 − y)2 ū± [DB/d̄ + RDB/s̄]
, (84)

and

P
(±)
[ν̄,ℓ](B;x, y, z) =

[d̄± + R s̄±]∆DB/ū − (1 − y)2 u∓ [∆DB/d + R ∆DB/s]

[d̄± + R s̄±]DB/ū + (1 − y)2 u∓ [DB/d + R DB/s]
, (85)

51



whereR ≡ sin2 θc/ cos2 θc ≃ 0.056.

In the simpler case in which the proton is unpolarized, we replaceq± by q/2, and Eqs. (84) and
(85) become respectively

P
(0)
[ν,ℓ](B;x, y, z) = −

[d + Rs]∆DB/u − (1 − y)2 ū [∆DB/d̄ + R ∆DB/s̄]

[d + R s]DB/u + (1 − y)2 ū [DB/d̄ + R DB/s̄]
, (86)

and

P
(0)
[ν̄,ℓ](B;x, y, z) =

[d̄ + R s̄]∆DB/ū − (1 − y)2 u[∆DB/d + R ∆DB/s]

[d̄ + R s̄]DB/ū + (1 − y)2 u[DB/d + RDB/s]
· (87)

The formulae given above hold for any baryon and antibaryon with spin1/2; further simplifications are
possible when aΛ baryon (and, more in general, a baryon rather than an antibaryon) is produced: in
this case, in the kinematical regions characterized by large values ofx andz one can neglect terms that
contain bothq̄ distributions (in a proton) and̄q fragmentations (into aΛ) as they are both small. Then
one simply has:

P
(±)
[ν,ℓ](Λ; z) ≃ P

(0)
[ν,ℓ](Λ; z) ≃ −∆DΛ/u

DΛ/u
, (88)

P
(±)
[ν̄,ℓ](Λ; z) ≃ P

(0)
[ν̄,ℓ](Λ; z) ≃ −∆DΛ/d + R ∆DΛ/s

DΛ/d + R DΛ/s
, (89)

and the polarizations, up to QCD evolution effects, become functions of the variablez only, since any
other term apart from the fragmentation functions cancels out.

Equations (88) and (89) relate the values of the longitudinal polarizationP (Λ) to a quantity with
a clear physical meaning, i.e. the ratio∆DΛ/q/DΛ/q; this happens with weak CC interactions – while
it cannot happen in purely electromagnetic DIS [171] – due tothe selection of the quark helicity and
flavour in the coupling with neutrinos. A measurement ofP (Λ) offers new direct information on the
fragmentation process.

Weak CCs couple to pure helicity states, and do not transfer transverse polarization from quarks to
final baryons; therefore transversely polarized protons donot add any information. However, one might
still have – in analogy to what happens in unpolarizedN–N interactions – finalΛ’s with transverse
(with respect to the production plane) polarization. This can only originate in the fragmentation process
of an unpolarized quark; recently, new polarizing fragmentation functions have been introduced [172] to
describe such an effect:

∆NDΛ↑/q(z,k⊥) = D̂Λ↑/q(z,k⊥) − D̂Λ↓/q(z,k⊥) (90)

wherek⊥ is the transverse momentum of theΛ with respect to the fragmenting quark momentum. A
measurement oftransverseΛ polarization would give a direct measurement of such a new function:

P
(0)
[ν,ℓ](Λ; z, k⊥) ≃

∆NDΛ↑/u

DΛ/u
· (91)

9.1.2 Neutral current neutrino processes,νp→νΛ↑X

In analogy to the previous paragraph, the longitudinal polarizations of the produced baryonB is given
by

P[ν,ν](B) =
dσνp→νB+X − dσνp→νB−X

dσνp→νB+X + dσνp→νB−X
, (92)

and

P[ν̄,ν̄](B) =
dσν̄p→ν̄B+X − dσν̄p→ν̄B−X

dσν̄p→ν̄B+X + dσν̄p→ν̄B−X
· (93)
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For the numerator and denominator ofP[ν,ν](B) and P[ν̄,ν̄](B) separately, one obtains, for a
generic spin stateS of the proton (C ≡ sin2 θW /3):

N
(S)
[ν,ν](B) =

∑

j

{[

(uj)
(S)
+ (1 − y)2 16C2 − (uj)

(S)
− (1 − 4C)2

]

∆DB/uj

+
[

(dj)
(S)
+ (1 − y)2 4C2 − (dj)

(S)
− (1 − 2C)2

]

∆DB/dj

+
[

(ūj)
(S)
+ (1 − y)2 (1 − 4C)2 − (ūj)

(S)
− 16C2

]

∆DB/ūj

+
[

(d̄j)
(S)
+ (1 − y)2 (1 − 2C)2 − (d̄j)

(S)
− 4C2

]

∆DB/d̄j

}

(94)

D
(S)
[ν,ν](B) =

∑

j

{[

(uj)
(S)
+ (1 − y)2 16C2 + (uj)

(S)
− (1 − 4C)2

]

DB/uj

+
[

(dj)
(S)
+ (1 − y)2 4C2 + (dj)

(S)
− (1 − 2C)2

]

DB/dj

+
[

(ūj)
(S)
+ (1 − y)2 (1 − 4C)2 + (ūj)

(S)
− 16C2

]

DB/ūj

+
[

(d̄j)
(S)
+ (1 − y)2 (1 − 2C)2 + (d̄j)

(S)
− 4C2

]

DB/d̄j

}

(95)

and

N
(S)
[ν̄,ν̄](B) =

∑

j

{[

(uj)
(S)
+ 16C2 − (uj)

(S)
− (1 − y)2 (1 − 4C)2

]

∆DB/uj

+
[

(dj)
(S)
+ 4C2 − (dj)

(S)
− (1 − y)2 (1 − 2C)2

]

∆DB/dj

+
[

(ūj)
(S)
+ (1 − 4C)2 − (ūj)

(S)
− (1 − y)2 16C2

]

∆DB/ūj

+
[

(d̄j)
(S)
+ (1 − 2C)2 − (d̄j)

(S)
− (1 − y)2 4C2

]

∆DB/d̄j

}

(96)

D
(S)
[ν̄,ν̄](B) =

∑

j

{[

(uj)
(S)
+ 16C2 + (uj)

(S)
− (1 − y)2 (1 − 4C)2

]

DB/uj

+
[

(dj)
(S)
+ 4C2 + (dj)

(S)
− (1 − y)2 (1 − 2C)2

]

DB/dj

+
[

(ūj)
(S)
+ (1 − 4C)2 + (ūj)

(S)
− (1 − y)2 16C2

]

DB/ūj

+
[

(d̄j)
(S)
+ (1 − 2C)2 + (d̄j)

(S)
− (1 − y)2 4C2

]

DB/d̄j

}

. (97)

In the case ofΛ (or any baryon, rather than antibaryon) production, a simple expression for its
longitudinal polarizationP can be obtained by neglecting the antiquark contributions and the terms
proportional tosin4 θW . For longitudinally polarized protons in this approximation we have

P
(±)
[ν,ν](Λ) ≃ −

∑

j

{

(uj)∓ (1 − 8C)∆DΛ/uj
+ (dj)∓ (1 − 4C)∆DΛ/dj

}

∑

j

{

(uj)∓ (1 − 8C)DΛ/uj
+ (dj)∓ (1 − 4C)DΛ/dj

} , (98)

whereas for unpolarized protons, whereq± is replaced byq/2, we obtain

P
(0)
[ν,ν](Λ) ≃ −

∑

j

{

uj (1 − 8C)∆DΛ/uj
+ dj (1 − 4C)∆DΛ/dj

}

∑

j

{

uj (1 − 8C)DΛ/uj
+ dj (1 − 4C)DΛ/dj

} · (99)

9.1.3 Present knowledge onΛ fragmentation functions and numerical results

The study ofΛ polarization gives direct access to new fragmentation functions of quarks intoΛ; it is thus
worth looking at the present knowledge of these functions, both unpolarized and polarized.
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UnpolarizedΛ fragmentation functions are determined by fittinge+e−→Λ+Λ̄+X experimental
data, which are sensitive only to singlet combinations suchas(DΛ/q + DΛ/q̄). It is therefore impossible
to separate the fragmentation functions relative toΛ’s from those forΛ̄’s in a model-independent way.
Furthermore, flavour separation is not possible without appropriate initial assumptions. For example,
one can assumeSU(3) flavour symmetry, as in Ref. [163]; this leads to the simple approximation

DΛ/u = DΛ/d = DΛ/s = DΛ̄/ū = DΛ̄/d̄ = DΛ̄/s̄ . (100)

Other parameterizations rely on different assumptions: for instance,SU(3) flavour andSU(6) spin-
flavour symmetry breakings lead in Ref. [168] toDΛ/s > DΛ/u = DΛ/d, and in Ref. [173] toDΛ/s ≫
DΛ/u = DΛ/d.

Other examples could be given, but at this stage much more stringent data are greatly needed for
the determination ofΛ fragmentation functions.

For polarizedΛ fragmentation functions the situation is also problematic. In fact, polarizedΛ
fragmentation functions are obtained by fittingΛ polarization at LEP, that is only sensitive to non-singlet
combinations such as∆DΛ/q − ∆DΛ/q̄ = ∆Dval

Λ/q. In this case we have direct information on the va-
lence contributions to the polarizedΛ fragmentation function, and the sea contributions are generated
through evolution, for each flavour, starting from a given initial scale. It is therefore possible to de-
termine polarized fragmentation functions forΛ andΛ̄ separately. Unfortunately, flavour separation is
very difficult in the polarized case, because experimental data currently available cannot even discern
between remarkably different input models adopted for the valence contributions: for example, the ratios
Cq(z) ≡ ∆DΛ/q(z)/DΛ/q(z) range from values such asCs = 1, Cu = Cd = 0 in the non-relativistic
quark model toCs = 0.6, Cu = Cd = −0.2 in Ref. [174], toCs = Cu = Cd = zα in one of the
scenarios of Ref. [163]. The parameterizations of sea and gluon fragmentations have to be guessed by
mere assumptions.

The most consistent and model-independent fragmentation functions that can be derived from
e+e− data are(DΛ/q + DΛ̄/q) and, separately,∆DΛ/q and∆DΛ̄/q. These do not allow a computation
of P (Λ) andP (Λ̄). The lack of knowledge of unpolarized fragmentation functions for separateΛ andΛ̄
could be partially overcome by introducing new measurable quantities:

P ∗(Λ) =
dσ(Λ+) − dσ(Λ−)

dσ(Λ + Λ̄)
=

1

1 + T
P (Λ), (101)

P ∗(Λ̄) =
dσ(Λ̄+) − dσ(Λ̄−)

dσ(Λ + Λ̄)
=

T

1 + T
P (Λ̄) , (102)

whereT = dσ(Λ̄)/dσ(Λ). These two quantities can be computed using the singlet unpolarized frag-
mentation functions, and they are simply related toP (Λ) andP (Λ̄) through the factorT , which can be
measured; notice that one always hasP ∗ ≤ P . In Fig. 30 we show, as an example, the expected values of
P ∗(Λ) andP ∗(Λ̄) obtained for typical kinematical values of the plannedν-Factory experiments, adopt-
ing two different sets of fragmentation functions from Ref.[163]. Note that, in the chosen kinematical
region, one expectsT ≪ 1 at largez so thatP ∗(Λ) ≃ P (Λ), while P (Λ̄) could be sensibly larger than
P ∗(Λ̄) and in fact comparable in size withP (Λ).

Let us finally emphasize the impact that neutrino semi-inclusive DIS (SIDIS) data would have on
our knowledge of both nucleon distribution functions andΛ fragmentation functions. Once theΛ and
Λ̄ polarizations in neutrino and antineutrino SIDIS off a polarized target will be measured, a carefully
combined study of equations like (84), (85), (88), (89), (98), (99) would not only allow the extraction
of new information about polarized and unpolarizedΛ andΛ̄ fragmentation functions, but also a cross
check of our knowledge on nucleon polarized distribution functions. This combined program would offer
an invaluable insight in the internal spin structure of hadrons in terms of their elementary constituents.
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Fig. 30: P ∗(Λ) (left) andP ∗(Λ̄) (right) for the processνµ p→µ− Λ↑ X as a function ofz, as predicted by using scenarios 2

and 3 for the polarizedΛ, Λ̄ fragmentation functions of Ref. [163]. Results for unpolarized (solid) and longitudinally polarized

(λ = +: dashed;λ = −: dot-dashed) proton target are shown. Kinematical conditions typical for theν-Factory have been

considered:Eν = 30 GeV,0.01 ≤ x ≤ 0.7, 1 GeV2 ≤ Q2 ≤ 100 GeV2, W 2 ≥ 4 GeV2.

9.2 Models forΛ polarization in the target fragmentation region

To describe theΛ polarization in the TFR one has to model the fracture function, namely the probability
of finding a partonq in the target nucleon and a final hadron with given momentum and polarization.
This problem was addressed in only few models, which we discuss below.

9.2.1 SU(6) Quark–diquark model

Longitudinal polarization ofΛ’s produced in DIS was first considered in [175]. After kicking out a
left-handedu or d quark from an unpolarized nucleon, we have the following relative probabilities for
the polarization states of the remnant diquark:

νp : p ⊖ d↑ ⇒ 1

36
[2(uu)10 + 4(uu)1−1]

νn : n ⊖ d↑ ⇒ 1

36
[9(ud)00 + (ud)10 + 2(ud)1−1]

ν̄p : p ⊖ u↑ ⇒ 1

36
[9(ud)00 + (ud)10 + 2(ud)1−1] (103)

ν̄n : n ⊖ u↑ ⇒ 1

36
[2(dd)10 + 4(dd)1−1],

where, for example,(uu)10 denotes auu-diquark with total spinS = 1 and spin projectionSz = 0.
It is assumed that during recombination with the unpolarized s quarks the diquark does not changes
its polarization. Since in the naive quark model (NQM) the polarization ofΛ’s is equal to thes-quark
polarization, theΛ’s that are directly produced will be unpolarized. However,the final stateΛ’s may
also be produced indirectly via electromagnetic decay ofΣ0 or strong decay ofΣ∗’s. In both cases, the
non-strange diquark changes its spin from 1 to 0, while the strange quark retains its polarization [169].
Using theSU(6) wave functions of octet and decuplet baryons, we obtain for theΛ polarization:

P νp
Λ = P ν̄n

Λ ≃ −0.55 (104)

P νn
Λ = P ν̄p

Λ ≃ −0.05, (105)
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yielding, for an isoscalar target,

P
ν(p+n)
Λ = P

ν̄(p+n)
Λ ≃ −0.30. (106)

9.2.2 Meson-cloud model

Some non-perturbative features of the nucleon structure, such as the deviation from the QCD-parton-
model-inspired Gottfried sum rule, can be explained in the framework of the meson-cloud model. The
pion-cloud model provides a natural explanation of the isospin symmetry breaking in the unpolarized
proton sea. In the case of polarized DIS, the scattering on the lowestΛK andΣ K component of the
nucleon wave function provides a possible mechanism leading to a violation of the Ellis–Jaffe sum rule.
The polarization ofΛ’s produced in the TFR in this model has been considered in [176]. It appears that
Λ polarization is almost 100% anticorrelated with the targetpolarization. It is thus expected to be 0 for
an unpolarized target.

9.2.3 Polarized-intrinsic-strangeness model

The polarized-intrinsic-strangeness model (for a review,see [177]) qualitatively reproduces experimental
features of theφ production inp̄N annihilation. The model is based on the following major observations.
First, the fact that the masses of pseudoscalar mesons are small with respect to the typical hadronic scale
can be attributed to the existence of effective strong attraction in theJPC = 0−+ channel. Secondly,
from phenomenological analyses of the quark condensates inthe framework of QCD sum rules, it is
known that the vacuum density of strange–antistrange quarkpairs is comparable to the density ofu and
d quarks. It is natural to assume that the polarized constituent quark can contain an̄ss pair with the
vacuum quantum numbers corresponding to a3P0 state. Hence, in the polarized nucleon, the spin ofs̄
will be antiparallel to the valence quark spin,Sz(s̄) = −1/2 for Sz(qv) = 1/2. In Ref. [162] there was
considered the case (in the following referred to asA) of an angular momentum projection of thes̄s
pair Lz(s̄s) = +1 (Sz(s̄s) = −1). In this case anys quark in the target fragment should havenegative
longitudinal polarization, so that the longitudinalΛ polarization should also benegative, see Fig. 31.

W

µ+

− u

u

d

s

s

d

Λ
P

ν

Fig. 31: Dominant diagram forΛ production in the target fragmentation region due to the scattering on a valenceu-quark. Each

small arrow represents the longitudinal polarization of the corresponding particle.

In the quark–parton model of deep inelasticν or ν̄ scattering, the net longitudinal polarizationPs

of the remnants quark is given by

Ps =

∑

q Cs qNq −
∑

q̄ Cs q̄Nq̄

Nq + Nq̄
, (107)
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whereNq (Nq̄) is the total number of events in which a quark (antiquark) isstruck, andCs q is the spin-
correlation coefficient. The antiquarks contribute with a negative sign because their CC weak interactions
are right-handed. The finalΛ polarizationPΛ = DF Ps, whereDF is a dilution factor that describes the
spin transfer during hadronization.

Let us consider also the scenarioB, where both projectionsLz(s̄s) = +1 andLz(s̄s) = 0 of
the s̄s-pair angular momentum contribute with equal probabilities. Lz(s̄s) = 0 means neglecting the
transverse motion of thēss pair [178].

The correlation of the remnants-quark polarization with that of any other struck sea quark (qsea 6=
s̄) depends on whether they come from the same parent constituent quark. If they do, which might be the
dominant case, then a strong spin-correlation is expected (casea). Otherwise, the correlation should be
reduced (caseb). Then for the spin-correlation coefficients we have

A : Csqval
= −1, Css̄ = 1

B : Csqval
= −1

3
, Css̄ =

1

3
Aa : Csqsea = 1, (108)

Ba : Csqsea =
1

9
,

Ab,Bb :Csqsea = 0.

The results for the remnants-quark polarization and the predictions of NQM are presented in the Ta-
ble 10 together with the measuredΛ polarization. The data on longitudinalΛ polarization from the

Table 10:Λ polarization in the TFR of (anti)neutrino SIDIS. Model predictions in boldface lie within±1σ of the experimental

data.

Experiment (Reaction) Data Aa Ab Ba Bb NQM

WA21 [155] (νµ − p) -0.29± 0.18 -0.51 -0.75 -0.22 -0.25 -0.55

WA21 [155] (̄νµ − p) -0.38± 0.18 -0.85 -0.92 -0.30 -0.31 0.03

WA59 [156] (̄νµ − Ne) -0.63± 0.13 -0.82 -0.91 -0.29 -0.30 -0.30

E632 [157] (νµ − Ne) -0.43± 0.20 -0.70 -0.84 -0.27 -0.27 -0.30

NOMAD [158] (νµ − C) -0.21± 0.04 -0.59 -0.80 -0.24 -0.27 -0.30

NOMAD [158] (νµ − “p′′) -0.29± 0.06 -0.54 -0.77 -0.23 -0.26 -0.55

NOMAD [158] (νµ − “n′′) -0.16± 0.05 -0.61 -0.81 -0.25 -0.27 0.03

NOMAD experiment [158] have the best statistical accuracy,and we will base the conclusions mainly
on comparisons with these data. As one can see from Table 10:

• the predictions of NQM are not so different from the NOMAD data on the isoscalar (mainly
carbon) target, but contradict the NOMADp andn and the WA21 data;

• the meson-cloud model predicts zero polarization and is in contradiction with all data;

• the best description of the NOMAD data is achieved in the polarized-intrinsic-strangeness model
with scenariosBa andBb, provided thatDF ≈ 1. The remnants-quark polarization is higher in
absolute value for theAa andAb scenarios. If one allows a large depolarization during hadroniza-
tion, DF ≈ 0.4-0.5, then the scenariosAa andAb can also provide a fair description of all data.

It is possible to distinguish between scenariosA andB of the last model by measuring thēΛ polarization
in the TFR of the neutrino SIDIS. One should expect thatPΛ̄ ≈ PΛ in caseA andPΛ̄ ≈ 3PΛ in caseB.

The models predict different polarizations for intrinsics- ands̄-quark sea:
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• NQM: ∆s = ∆s̄ = 0;

• meson-cloud model [26]:∆s̄ ≈ 0, ∆s < 0;

• intrinsic-strangeness-modelA: ∆s ≈ ∆s̄ < 0;

• intrinsic-strangeness-modelB: ∆s ≈ 1/3; ∆s̄ < 0;

In principle, these predictions can be independently tested by measuring the asymmetries of strange-
particle production in the current fragmentation region ofSIDIS or of (anti)neutrino DIS on a polarized
target.

One could try to improve the naive quark model by taking into account theSU(6) symmetry
breaking as it was done in [168]. In the meson-cloud model onecan expect that the contributions from
higher possible fluctuations with vector mesonK+∗Λ will lead to non-zeroΛ polarization. However, the
estimates of ref. [26] show that the relative probability ofthis state is small with respect toK+Λ (less
than 10%). Moreover they predict a positively-correlateds-quark spin in a polarized proton.

9.3 Discussion

The study ofΛ polarization in the CFR allows us to understand the spin transfer from the quarks to the
Λ. Due to the natural helicity and flavour selection of neutrino couplings, we can precisely single out
specific quark contributions: this information cannot be obtained from the usual lepton-initiated DIS.
The information on polarized and unpolarized fragmentation functions intoΛ which is available from
LEP data is scarce and uncertain; also data from NOMAD are farfrom being decisive in fixing the
features of quark-spin transfer. Theν-Factory data will induce a big improvement in our understanding
of fragmentation processes.

In the target fragmentation region, one can study a new phenomenon, namely, the polarization
transfer from the lepton to the final hadron. The models discussed here are the first attempts to describe
this effect. The different models of spin transfer from a polarized quark to a polarizedΛ are able to
describe the existing LEP data but give different predictions for (anti)neutrino DIS (see, for example,
[164, 170] and [179] where comparison with NOMAD data are presented).

Finally, we would like to mention that the best existing dataon Λ polarization, which come from
the NOMAD experiment, are based on the analysis of about one million DIS events. The statistics at the
ν-Factory is expected to be a hundred times higher, thus providing ten times better statistical accuracy.
This will provide a more detailed study of theΛ polarization dependence on kinematic variables and
allow better comparisons with different model predictions.

10 SEARCHES FOR NEW PHYSICS

We now review briefly some prospects in searching for new physics using the intense beams from a
neutrino factory.

10.1 A search forZ′ in muon–neutrino-associated charm production

In many extensions of the SM the presence of an extra neutral boson,Z ′, is invoked. A precision study
of weak NC-exchange processes involving only second-generation fermions is still missing. A search for
Z ′ in muon–neutrino-associated charm production has recently been proposed [180]. This process only
involvesZ ′ couplings with fermions from the second generation. It is interesting because an exoticZ ′

with stronger coupling to theI3 = 1/2 component of weak isospin doublets could still give measurable
effects at neutrino factories, unlike LHC experiments, which are only sensitive to theZ ′ coupling to
charged leptons (I3 = −1/2).

We briefly review the method and the application to neutrino factories using anideal detector. For
a detailed discussion of this method, see Ref. [180].
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10.1.1 The process

At Q2 ≪ M2
Z the NC effective Lagrangian ruling the associated charm production induced byνµ and

including the new physics term is given by [180]

Lνcc
T = −GF√

2
νµγα(1 − γ5)νµ cγα [ǫV (c) − ǫA(c)γ5] c , (109)

where

ǫV (c) = ǫL(u) + ǫR(u) +

(

M2
Z

M2
Z′

)

(ηL + ηR)

≡ ǫV (u) +

(

M2
Z

M2
Z′

)

ηV =

[

1 +

(

M2
Z

M2
Z′

)

x

]

ǫV (u) , (110)

ǫA(c) = ǫL(u) − ǫR(u) +

(

M2
Z

M2
Z′

)

(ηL − ηR)

≡ ǫA(u) +

(

M2
Z

M2
Z′

)

ηA =

[

1 +

(

M2
Z

M2
Z′

)

y

]

ǫA(u) , (111)

and the parametersx andy give the departure of the couplings from SM predictions.

10.1.2 Description of the method

The peculiar topology of the associated charm production inνµ NC interactions is exploited: two
charmed hadrons in the final state. Consequently, there are no other physical processes that may mimic
it. Experimentally we are sensitive to the ratio

R =
σNC

cc̄

σCC
(112)

which can be written as the product

R =
σNC

cc̄ (Z0 + Z ′)

σNC
cc̄ (Z0)

× σNC
cc̄ (Z0)

σCC
= r × f (113)

whereσNC
cc̄ (Z0) is the cross section of the associated charm-production process inνµ interactions in the

absence of theZ ′ boson,σNC
cc̄ (Z0 + Z ′) includes the contribution of the new neutral boson, andσCC is

theνµ DIS CC cross section.

From Eq. (113) it is clear that the relevant information about the Z ′ comes from the ratior,
which is unity in absence of theZ ′. In the following we assume a50 GeV mono-energeticνµ beam13.
Under this assumption, by using the HERWIG simulation program to compute the the ratiof , we get
f = (1.25 ± 0.01) × 10−4.

If we parameterize the ratior in terms of thex, y andM2
Z′ variables defined in Section 10.1.1, the

most general expression we obtain is:

r(x, y,M2
Z′) = 1 +

(

500

MZ′

)2

(A1y + B1x) +

(

500

MZ′

)4

(A2y
2 + B2x

2 + C1xy). (114)

Fitting the data from the calculation with the previous function, we obtain the following values of the
coefficients:A1 = 0.1, A2 = 0.003, B1 = 0.02, B2 = 0.0007 andC1 = −0.0002. The fit is valid in the
[−30, 30] range for bothx andy variables. Figure 32 shows the fitted functionr for MZ′ = 500 GeV/c2.
The number of observed events,NS, can be written as

13 The results achievable with a real neutrino spectrum of meanenergy〈Eν〉 are rather well reproduced by using a simple
mono-energetic beam with energy equal to〈Eν〉.
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Fig. 32:The ratior is plotted by assumingMZ′ = 500 GeV /c2.

NS = Ncc̄ ·
εS

εB
· r , (115)

whereNcc̄ is the number of observed events without theZ ′ effect, εS and εB are the reconstruction
efficiencies for the events with and without aZ ′, respectively.

10.1.3 Measurement accuracy

Once the charmed particles have been tagged, theZ ′ effect would show up as an excess/defect of doubly
charmed events in NC interactions. From Eq. (114) we can argue that for ‘large’Z ′ couplings, i.e.x
andy > 20, we can get an enhancement of the associated charm production of about a factor 7. On the
other hand, if we do not observe any excess/defect, we can puta limit on thex andy parameters. As
an example we report in Fig. 33 the sensitivity plot at 95% C.L. for thex andy variables atMZ′ = 500
GeV/c2. Different systematic errors are assumed from 1% to 50%.

The allowed region of parameters is obtained from the formula

1 − 1.96 · σ

Ncc̄
≤ εS

εB
· r ≤ 1 + 1.96 · σ

Ncc̄
, (116)

whereσ is defined as
σ = (ε2

stat + ε2
syst) (117)

and includes the error on the event counting from both a statistical and systematics sources. The factor
1.96 takes into account the required confidence level.

In Fig. 33, for each plot, the two lines bound the region of coupling parameters where no significant
excess/defect of associated charm-production events is found. In other words, an observation of a number
of charm pair events in agreement with SM predictions excludes the regions outside the band. For each
plot shown in Fig. 33, we report in Table 11 the∆x and∆y values, respectively the bandwidth aty =
−30 andx = −30. We assume that107 CC interactions are collected at theν-Factory. Figure 33 shows
the comparison between the sensitivity achievable with present experiments14 (say CHORUS) and the

14Such a measurement could also be exploited by the NuTeV experiment, which recently measured NC charm production in
νµ–Fe scattering [181].
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Scenario Present experimentsν-Factory

ε ∆x ∆y ∆x ∆y

0.01 12.0 5.5 2.5 1.5

0.10 12.5 6.0 3.5 2.0

0.25 14.0 6.5 6.5 3.0

0.50 18.0 8.0 13.0 5.5

Table 11: Band widths atx = −30 andy = −30 for all the sensitivity plots shown in Fig. 33.ε indicates the systematic

uncertainty.

one obtainable at aν-Factory. At aν-Factory the systematic uncertainties would play an important role
if they are larger than about 10%, while the statistics is theleading contribution for present experiments.

Present experiments
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Fig. 33:The sensitivity plots for thex andy variables atMZ′ = 500 GeV/c2 are shown.ε indicates the systematic
error. 107 CC interactions are assumed to be collected at aν-Factory (right plot). The sensitivity achievable with
present experiments is also considered (left plot).

10.2 Bounds on 4-fermion operators from aν-Factory

Many types of Beyond-the-Standard-Model (BSM) physics appear at energy scales above that of the
neutrino-scattering process, so their tree-level effectsat aν-Factory can be parametrized by 4-fermion
operators. These can contribute in theµ± decay, or in the scattering in the detector. All new physics
induced by scalars or vectors can be written, via Fierz transformations, as(V ± A)(V − A) vertices,
which we normalize as:

ηℓ̄eν̄ν
PL (ℓ̄γαPe)(ν̄γαPLν), η

ūidj ℓ̄ν
PL (ūiγ

αPdj)(ℓ̄γαPLν) , (118)

whereP = PL = (1 − γ5)/2 or P = PR = (1 + γ5)/2, andℓ is a charged lepton. Neutrinos without
index can be of any flavour. We assume that the strongest neutrino interactions are SM weak, so that the
neutrino-flavour basis makes sense perturbatively (see ref. [182]).

Bounds on a variety of extensions of the SM from neutrino scattering were reviewed in [183];
a brief update can be found in [142]. New physics in neutrino scattering that cannot be parametrized
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by 4-fermion operators has recently been discussed in [3]. Acatalogue of old constraints on 4-fermion
operators can be found in Refs. [183] (many models) and [184](leptoquarks and bileptons)—more up-
to-date bounds are reviewed in [185] (Z ′s) and many other recent papers. Constraints onZ ′s from a
neutrino factory were studied in the previous section, and bounds onR-parity-violating couplings from
neutrino scattering have been discussed in [186].

A ν-Factory can improve bounds on 4-fermion operators involving neutrinos by many orders of
magnitude. However, since neutrinos are weakly interacting, the resulting bounds are generically weaker
than bounds on 4-fermion operators involving charged leptons rather than neutrinos. For instance, new
physics that can contribute both to lepton-flavour violation in neutrino scattering and toµ → eγ will be
more strongly constrained (or more readily detected) inµ → eγ than in neutrino scattering, as can be
seen from the bounds on lepton-flavour violation discussed in the Report of the Stopped-Muon Working
Group [187]. It could nonetheless be interesting to look forBSM physics in neutrino scattering at the
near detector of a neutrino factory.

First of all, any observed lepton-flavour violation must be due to something other than oscilla-
tions. Neutrinos are in fact produced only a few hundred metres away from the detector, and have no
time to oscillate, given the current determinations of the mixing parameters. New physics that can be
parametrized by 4-fermion operators can then be distinguished from oscillations.

Secondly, there is BSM physics that can induceννℓℓ 4-fermion operators, without inducingℓℓℓℓ
operators15 (ℓ is a charged lepton.) For quarks, BSM physics (e.g. LQ,Z ′) that inducesνν̄qq also
inducesℓℓ̄qq, so we do not discuss operators involving quarks. There could nonetheless be interest-
ing limits on flavour-changing vertices involving charm quarks, from neutrino scattering off nucleons,
because rareD-meson decays are poorly measured.

As explained above, we only consider the case of flavour violation induced in the muon decay.
Since we do not carry out a complete simulation of the event rates, we shall assume that the kinematics
of the muon decay induced by the first vertex in Eq. (118) is thesameas for the SM(V − A)(V − A)
current. We shall then parameterize the muon-decay rate induced by the vertex (118) as:

Γ(µ → eν̄iνj) =

(

η
µ̄eν̄iνj

PL

2
√

2GF

)2

ΓSM (µ → eν̄eνµ) ≡ [ǫ
µ̄eν̄iνj

PL ]2ΓSM(µ → eν̄eνµ) (119)

and will assume the neutrino beam shapes induced by these BSMdecays to be approximated by the SM
one.

The new physics signal that we explore is given by a final-stateτ or by a wrong-sign muon (WSM;
e.g. aµ+ produced in the detector by a neutrino beam produced inµ− decay). These signals do not
suffer from any irreducible physics background. Someτ ’s can be produced in the decays of charmed
mesons produced by SM CC interactions, but in principle these events will also contain an electron or
muon from the CC vertex. Theτ decays from charm produced in NC neutrino interactions, canbe vetoed
by identifying the second charm in the event. Similar considerations apply to events with WSMs. As a
consequence, a meaningful estimate of the background ratesis not possible without a concrete detector
study. To quantify the discovery potential, we therefore limit ourselves to presenting a sensitivity reach
for the detection ofN anomalous events, assuming 100% reconstruction efficiencyfor the BSM signal.
We assume106 νe and108 νN scattering interactions per year in the detector due to SM CCinteractions.
Then BSM physics could be detected inνe scattering if:

η

2
√

2GF

≡ ǫ >
√

N × 10−3 (120)

and could be detected inνN scattering if:

η

2
√

2GF

≡ ǫ >
√

N × 10−4 (121)

15For example by the exchange of a singlet that couples to(νiℓj − νjℓi).
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Table 12: Flavour changing four fermion vertices involvingneutrinos, which aν factory could set a bound on. Neutrinos with

index i can be of any flavour. The processes listed in parenthesis presently constrain (at 90 % cl) the coefficients of the four

fermion vertices to be less thanǫ × 2
√

2GF . A neutrino factory could set bounds given in the last column. These bounds

assume that all 4-fermion operators other than the contrained one are absent. Note that there are much stronger bounds on

ℓ̄iℓj ℓ̄kℓl vertices than the quoted bounds onℓ̄iℓj ν̄kνl.

Vertex Current limits ν-Factory limit

(µ̄γαPLe)(ν̄τ γαPLνi) |ǫ| < 0.06 (ν oscillations) 3 × 10−4

(µ̄γαPRe)(ν̄τγαPLνi) |ǫ| < 0.03 (Gµ(gS
RR)) 3 × 10−4

(µ̄γαPLe)(ν̄µγαPLνi) |ǫ| < 0.1 (µ → eνeν̄µ) 3 × 10−4

(µ̄γαPRe)(ν̄µγαPLνi) |ǫ| < 0.03 (Gµ(gS
RR)) 3 × 10−4

(µ̄γαPRe)(ν̄iγαPLντ ) |ǫ| < 0.03 (Gµ(gS
RR)) 3 × 10−4

(µ̄γαPLe)(ν̄iγαPLντ ) |ǫ| < 0.2 (Gµ) 3 × 10−4

Notice that while the reach is lower withνe scattering, the detector backgrounds could be much smaller,
and any future detailed study will have to consider the possibility offered by this channel. The results we
present here are obtained assuming the event rates fromνN scattering.

We list in Table 12 the lepton-flavour-violating 4-fermion operators on which aν factory could
set better bounds than are available now. In the first column,we list µ̄eν̄ν vertices of different chirality.
This is a useful way of listing 4-fermion vertices because the new physics that generates them could
depend on fermion chirality. In the second column are the best available limits yet on the operators,
and the processes from which the bounds come. In the last column are the limits that aν-Factory
could set, assuming a 10 event sensitivity (N = 10 in Eqs. 120 and 121). Horizontal lines in the last
column separate operators that are distinguishable at aν-Factory because they induce different final-
state particles in the detector; polarized muons would be required to distinguish between LL and RL
couplings. Similarly, horizontal lines in the second column separate operators that are distinguishable in
present experiments (where the flavour of the outgoing neutrinos is often not detected).

11 CONCLUSIONS

This work documents our assessment of the physics potentialof detectors placed at the front-end of
a high-current muon storage ring. In most of the cases presented, we tried to evaluate in quantitative
terms the ultimate accuracies that can be reached, given theavailable statistics and given the theoretical
knowledge available today.

In the case of determinations of the partonic densities of the nucleon, we proved that theν-Factory
could significantly improve the already good knowledge we have today. In the unpolarized case, the
knowledge of the valence distributions would improve by more than one order of magnitude, in the kine-
matical regionx >∼ 0.1, which is best accessible with 50 GeV muon beams. The individual components
of the sea (̄u, d̄, s ands̄), as well as the gluon, would be measured with relative accuracies in the range of
1–10%, for0.1 <∼ x <∼ 0.6. The high statistics available over a large range ofQ2 would furthermore al-
low the accurate determination of higher-twist corrections, strongly reducing the theoretical systematics
that affect the extraction ofαS from sum rules and global fits.

In the case of polarized densities, we stressed the uniqueness of theν-Factory as a means of
disentangling quark and antiquark distributions, and their first moments in particular. These can be
determined at the level of few per cent for up and down, and 10%for the strange, sufficient to distinguish
between theoretical scenarios, and thus allowing a full understanding of the proton spin structure. A
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potential ability to pin down the shapes of individual flavour components with accuracies at the level of
few per cent is limited by the mixing with the polarized gluon. To identify this possible weakness of the
ν-Factory polarized-target programme, it was crucial to perform our analysis at the NLO; we showed in
fact that any study based on the LO formalism would have resulted in far too optimistic conclusions. This
holds true both in the case of determinations based on globalfits and on direct extractions using flavour
tagging in the final state. Our conclusion here is that a full exploitation of theν-Factory potential for
polarized measurements of the shapes of individual partonic densities requires an a-priori knowledge of
the polarized gluon density. It is hoped that the new information expected to arise from the forthcoming
set of polarized DIS experiments at CERN, DESY and RHIC will suffice.

The situation is also very bright for measurements of C–evendistributions. Here, the first moments
of singlet, triplet and octet axial charges can be measured with accuracies which are up to one order of
magnitude better than the current uncertainties. In particular, the improvement in the determination
of the singlet axial charge would allow a definitive confirmation or refutation of the anomaly scenario
compared to the ‘instanton’ or ‘skyrmion’ scenarios, at least if the theoretical uncertainty originating
from the small–x extrapolation can be kept under control. The measurement ofthe octet axial charge
with a few percent uncertainty will allow a determination ofthe strange contribution to the proton spin
better than 10%, and allow stringent tests of models ofSU(3) violation when compared to the direct
determination from hyperon decays.

The measurement of two fundamental constants of nature,αS(MZ) andsin2 θW , will be possible
using a variety of techniques. At best the accuracy of these measurements will match or slightly improve
the accuracy available today, although the measurements attheν-Factory are subject to different system-
atics and therefore provide an important consistency checkof current data. In the case ofαS(MZ), the
dependence of the results on the modeling of higher-twist corrections both in the structure function fits
and in the GLS sum rule is significantly reduced relative to current measurements, as mentioned above.
In the case ofsin2 θW , its determination viaνe scattering at theν-Factory has an uncertainty of approxi-
mately2×10−4, dominated by the statistics and the luminosity measurement. This error is comparable to
what already known today from EW measurements inZ0 decays. Compared to these, however, this de-
termination would improve current low-energy extractions, and be subject to totally different systematic
uncertainties. It would also be sensitive to different classes of new-physics contributions. The extrapo-
lation toQ = MZ is affected, at the same level of uncertainty, by the theoretical assumptions used in
the evaluation of the hadronic-loop corrections toγ-Z mixing. The determination via DIS, on the other
hand, is limited by the uncertainties on the heavy-flavour parton densities. As shown earlier, these should
be significantly reduced using theν-Factory data themselves.

In several other areas, the data from theν-Factory will allow quantitative studies to be made
of phenomena that, so far have only been explored at a mostly qualitative level. This is the case of
the exclusive production of charmed mesons and baryons (leading to very large samples, suitable for
precise extractions of branching ratios and decay constants), of the study of spin-transfer phenomena,
and of the study of nuclear effects in DIS. While nuclear effects could be bypassed at theν-Factory
by using hydrogen targets directly, the flavour separation of partonic densities will require using also
targets containing neutrons. This calls for an accurate understanding of nuclear effects. The ability to
run with bothH and heavier targets will in turn provide rich data sets useful for quantitative studies of
nuclear models. The study ofΛ polarization both in the target and in the fragmentation regions, will
help clarifying the intriguing problem of spin transfer. Wereviewed several of the existing models,
and indicated how semi-inclusive neutrino DIS will allow the identification of the right ones, as well as
providing input for the measurement of polarized fragmentation functions.

Finally, we presented some cases of exploration for physicsbeyond the SM using theν-Factory
data. Although the neutrino beam energies considered in ourwork are well below any reasonable thresh-
old for new physics, the large statistics makes it possible to search for manifestations of virtual effects.
The exchange of new gauge bosons decoupled from the first generation of quarks and leptons can be

64



seen via enhancements of the inclusive charm production rate, with a sensitivity well beyond the present
limits. Rare lepton-flavour-violating decays of muons in the ring could be tagged in the DIS final states
through the detection of wrong-sign electrons and muons, orof prompt taus. Once again, the sensitivity
at theν-Factory goes well beyond existing limits.

The work presented here has two clear weaknesses, which point to two directions for further work.
On one side, a realistic evaluation of the experimental feasibility of the proposed measurements should
be performed. Concrete detector designs should be proposed, and the detector performance should be
evaluated in the light of the statistical and theoretical accuracy reach set by our study. As part of this work,
an optimization of the beam parameters (energy, length of the straight section, distance of the detector
from the ring) should be performed for each individual physics task. On the other side, we made no any
effort to present a physics case justifying a set of goals forthe performances. Considering that these
results will not be available before at least 10–15 years from now, some judgement on the merit of these
measurements has to be given. For example, why should we wantto know 15 years from now the strange
density of the proton with an accuracy of 1%? How would our knowledge of fundamental physics, or our
ability to predict new phenomena, improve if we could reach this goal? From the measurements listed in
this document, which ones will be the most important at the time when theν-Factory will be operating?
We hope that future studies of this new and fascinating facility will address this important aspect of the
case for front-end experiments.
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