178 research outputs found

    The calyx of Held

    Get PDF
    The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca2+-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic termina

    Nitric Oxide Signaling in the Auditory Pathway

    Get PDF
    Nitric oxide (NO) is of fundamental importance in regulating immune, cardiovascular, reproductive, neuromuscular, and nervous system function. It is rapidly synthesized and cannot be confined, it is highly reactive, so its lifetime is measured in seconds. These distinctive properties (contrasting with classical neurotransmitters and neuromodulators) give rise to the concept of NO as a “volume transmitter,” where it is generated from an active source, diffuses to interact with proteins and receptors within a sphere of influence or volume, but limited in distance and time by its short half-life. In the auditory system, the neuronal NO-synthetizing enzyme, nNOS, is highly expressed and tightly coupled to postsynaptic calcium influx at excitatory synapses. This provides a powerful activity-dependent control of postsynaptic intrinsic excitability via cGMP generation, protein kinase G activation and modulation of voltage-gated conductances. NO may also regulate vesicle mobility via retrograde signaling. This Mini Review focuses on the auditory system, but highlights general mechanisms by which NO mediates neuronal intrinsic plasticity and synaptic transmission. The dependence of NO generation on synaptic and sound-evoked activity has important local modulatory actions and NO serves as a “volume transmitter” in the auditory brainstem. It also has potentially destructive consequences during intense activity or on spill-over from other NO sources during pathological conditions, when aberrant signaling may interfere with the precisely timed and tonotopically organized auditory system

    Wide-band information transmission at the calyx of Held

    Get PDF
    We use a mathematical model of the calyx of Held to explore information transmission at this giant glutamatergic synapse. The significant depression of the postsynaptic response to repeated stimulation in vitro is a result of various activity-dependent processes in multiple time scales, which can be reproduced by multiexponential functions in this model. When stimulated by Poisson-distributed spike trains the amplitude of the postsynaptic current varies considerably with the preceding interspike intervals. Here we quantify the information contained in the postsynaptic current amplitude about preceding interspike intervals and determine the impact of different pre- and postsynaptic factors on information transmission. The mutual information between presynaptic spike times and the amplitude of the postsynaptic response in general decreases as the mean stimulation rate increases, but remains high even at frequencies greater than 100 Hz, unlike at many neocortical synapses. The maintenance of information transmission is attributable largely to vesicle recycling rates at low frequencies of stimulation, shifting to vesicle release probability at high frequencies. Also at higher frequencies the synapse operates largely in a release ready mode in which most release sites contain a release-ready vesicle and release probabilities are low

    Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington's disease

    Get PDF
    Synapse abnormalities in Huntington's disease (HD) patients can precede clinical diagnosis and neuron loss by decades. The polyglutamine expansion in the huntingtin (htt) protein that underlies this disorder leads to perturbations in many cellular pathways, including the disruption of Rab11-dependent endosomal recycling. Impairment of the small GTPase Rab11 leads to the defective formation of vesicles in HD models and may thus contribute to the early stages of the synaptic dysfunction in this disorder. Here, we employ transgenic Drosophila melanogaster models of HD to investigate anomalies at the synapse and the role of Rab11 in this pathology. We find that the expression of mutant htt in the larval neuromuscular junction decreases the presynaptic vesicle size, reduces quantal amplitudes and evoked synaptic transmission and alters larval crawling behaviour. Furthermore, these indicators of early synaptic dysfunction are reversed by the overexpression of Rab11. This work highlights a potential novel HD therapeutic strategy for early intervention, prior to neuronal loss and clinical manifestation of disease

    Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse

    Get PDF
    The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High‐frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage‐clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high‐intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low

    VPRBP functions downstream of the androgen receptor and OGT to restrict p53 activation in prostate cancer

    Get PDF
    Androgen receptor (AR) is a major driver of prostate cancer initiation and progression. O-GlcNAc transferase (OGT), the enzyme that catalyzes the covalent addition of UDP-N-acetylglucosamine (UDP-GlcNAc) to serine and threonine residues of proteins, is often highly expressed in prostate cancer with its expression correlated with high Gleason score. In this study, we have identified an AR and OGT coregulated factor, Vpr (HIV-1) binding protein (VPRBP) also known as DDB1 and CUL4 Associated Factor 1 (DCAF1). We show that VPRBP is regulated by the AR at the transcript level, and stabilized by OGT at the protein level. VPRBP knockdown in prostate cancer cells led to a significant decrease in cell proliferation, p53 stabilization, nucleolar fragmentation, and increased p53 recruitment to the chromatin. In human prostate tumor samples, VPRBP protein overexpression correlated with AR amplification, OGT overexpression, a shorter time to postoperative biochemical progression and poor clinical outcome. In clinical transcriptomic data, VPRBP expression was positively correlated with the AR and also with AR activity gene signatures.ImplicationsIn conclusion, we have shown that VPRBP/DCAF1 promotes prostate cancer cell proliferation by restraining p53 activation under the influence of the AR and OGT

    A biophysical model of short-term plasticity at the calyx of Held

    Get PDF
    The calyx of Held is a giant glutamatergic synapse in the auditory system and displays multiple forms of short-term facilitation and depression. This study presents a detailed model of short-term plasticity at this synapse. The main components of the model are the presynaptic vesicle dynamics, which include passive and activity-dependent recycling, calcium-dependent exocytosis and the postsynaptic AMPA receptor kinetics. The behaviour of the model is compared to experimental data and reproduces the time course and amplitude of synaptic depression during repetitive stimulation at different frequencies. A comparison of different manipulations of the model shows that accurate fits require the inclusion of fast activity-dependent vesicle recycling and a limited number of vesicle docking sites at each active zone

    E-LEARNING U BANKARSTVU

    Get PDF
    With this paper research results are presented on a successful e-learning implementation in banking. Previous experience with e-learning, general satisfaction with e-learning, satisfaction with particular elements of e-learning, on-line support, e-learning acceptance by office employees, as well as demanding way of assuring regular office business, indicate the possibility of implementing e-learning not only as a training process, but as a regular business process as well.U ovom radu je opisano istraživanje uspješnosti primjene e-learninga u bankarstvu. Dosadašnje iskustvo s e-learningom, općenito zadovoljstvo e-learningom, zadovoljstvo elementima e-learninga, on-line podrškom, prihvatljivost prakticiranja e-learninga za zaposlenike poslovnica, kao i zahtjevnost osiguranja redovnog rada poslovnica, ukazuju na mogućnost implementiranja e-learninga ne samo kao obrazovnog već i svakodnevnog poslovnog proces
    corecore