182 research outputs found

    Understanding pattern scaling errors across a range of emissions pathways

    Get PDF
    The regional climate impacts of hypothetical future emissions scenarios can be estimated by combining Earth system model simulations with a linear pattern scaling model such as MESMER (Modular Earth System Model Emulator with spatially Resolved output), which uses estimated patterns of the local response per degree of global temperature change. Here we use the mean trend component of MESMER to emulate the regional pattern of the surface temperature response based on historical single-forcer and future Shared Socioeconomic Pathway (SSP) CMIP6 (Coupled Model Intercomparison Project Phase 6) simulations. Errors in the emulations for selected target scenarios (SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) are decomposed into two components, namely (1) the differences in scaling patterns between scenarios as a consequence of varying combinations of external forcings and (2) the intrinsic time series differences between the local and global responses in the target scenario. The time series error is relatively small for high-emissions scenarios, contributing around 20 % of the total error, but is similar in magnitude to the pattern error for lower-emissions scenarios. This irreducible time series error limits the efficacy of linear pattern scaling for emulating strong mitigation pathways and reduces the dependence on the predictor pattern used. The results help guide the choice of predictor scenarios for simple climate models and where to target for the introduction of other dependent variables beyond global surface temperature into pattern scaling models

    Modifying emissions scenario projections to account for the effects of COVID-19: protocol for CovidMIP

    Get PDF
    Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions. While the country-level scale of emissions changes can be estimated in near real time, the more detailed, gridded emissions estimates that are required to run general circulation models (GCMs) of the climate will take longer to collect. In this paper we use recorded and projected country-and-sector activity levels to modify gridded predictions from the MESSAGE-GLOBIOM SSP2-4.5 scenario. We provide updated projections for concentrations of greenhouse gases, emissions fields for aerosols, and precursors and the ozone and optical properties that result from this. The code base to perform similar modifications to other scenarios is also provided. We outline the means by which these results may be used in a model intercomparison project (CovidMIP) to investigate the impact of national lockdown measures on climate, including regional temperature, precipitation, and circulation changes. This includes three strands: an assessment of short-term effects (5-year period) and of longer-term effects (30 years) and an investigation into the separate effects of changes in emissions of greenhouse gases and aerosols. This last strand supports the possible attribution of observed changes in the climate system; hence these simulations will also form part of the Detection and Attribution Model Intercomparison Project (DAMIP)

    Spatial variations in lead isotopes, Tasman Element, eastern Australia

    Get PDF
    Lead isotope data from ore deposits and mineral occurrences in the Tasman Element of eastern Australia have been used to construct isotopic maps of this region. These maps exhibit systematic patterns in parameters derived from isotope ratios. The parameters include μ (238U/204Pb), as calculated using the Cumming and Richards (1975) lead evolution model, and the difference between true age of mineralisation and the Cumming and Richards lead isotope model age of mineralisation (Δt). Variations in μ coincide with boundaries at the orogen, subprovince and zone scales. The boundary between the Lachlan and New England orogens is accompanied by a decrease in μ, and within the Lachlan Orogen, the Central Subprovince is characterised by μ that is significantly higher than in the adjacent Eastern and Western subprovinces. Within the Eastern Subprovince, the Cu-Au-rich Macquarie Arc is characterised by significantly lower μ relative to adjacent rocks. The Macquarie Arc is also characterised by very high Δt (generally above 200 Myr). Other regions characterised by very high Δt include western Tasmania, the southeastern New England Orogen, and the Hodgkinson Province in northern Queensland. These anomalies are within a broad pattern of decreasing Δt from east to west, with Paleozoic deposits within or adjacent to Proterozoic crust characterised by Δt values of 50 Myr or below. The patterns in Δt are interpreted to reflect the presence of the two major tectonic components involved in the Paleozoic Tasman margin in Australia (cf., Münker, 2000): subducting proto-Pacific crust (Δt >150 Myr), and Proterozoic Australia crust (Δt < 50 Myr) on the over-riding plate. Proterozoic Australia crustal sources are interpreted to dominate the western parts of the Tasman Element and Proterozoic crust further to the west, whereas Pacific crustal sources are inferred to characterise western Tasmania and much of the eastern part of the Tasman Element. Contrasts in Δt between the Cambrian Mount Read Volcanics in western Tasmania and similar aged rocks in western Victoria and New South Wales make direct tectonic correlation between these rocks problematic

    Changes in IPCC Scenario Assessment Emulators Between SR1.5 and AR6 Unraveled

    Get PDF
    The IPCC's scientific assessment of the timing of net-zero emissions and 2030 emission reduction targets consistent with limiting warming to 1.5°C or 2°C rests on large scenario databases. Updates to this assessment, such as between the IPCC's Special Report on Global Warming of 1.5°C (SR1.5) of warming and the Sixth Assessment Report (AR6), are the result of intertwined, sometimes opaque, factors. Here we isolate one factor: the Earth System Model emulators used to estimate the global warming implications of scenarios. We show that warming projections using AR6-calibrated emulators are consistent, to within around 0.1°C, with projections made by the emulators used in SR1.5. The consistency is due to two almost compensating changes: the increase in assessed historical warming between SR1.5 (based on AR5) and AR6, and a reduction in projected warming due to improved agreement between the emulators' response to emissions and the assessment to which it is calibrated

    Robust evidence for reversal in the aerosol effective climate forcing trend

    Get PDF
    Anthropogenic aerosols exert a cooling influence that offsets part of the greenhouse gas warming. Due to their short tropospheric lifetime of only up to several days, the aerosol forcing responds quickly to emissions. Here we present and discuss the evolution of the aerosol forcing since 2000. There are multiple lines of evidence that allow to robustly conclude that the anthropogenic aerosol effective radiative forcing – both aerosol-radiation and aerosol-cloud interactions – has become globally less negative, i.e. that the trend in aerosol effective radiative forcing changed sign from negative to positive. Bottom-up inventories show that anthropogenic primary aerosol and aerosol precursor emissions declined in most regions of the world; observations related to aerosol burden show declining trends, in particular of the fine-mode particles that make up most of the anthropogenic aerosols; satellite retrievals of cloud droplet numbers show trends consistent in sign, as do observations of top-of-atmosphere radiation. Climate model results, including a revised set that is constrained by observations of the ocean heat content evolution show a consistent sign and magnitude for a positive forcing relative to 2000 due to reduced aerosol effects. This reduction leads to an acceleration of the forcing of climate change, i.e. an increase in forcing by 0.1 to 0.3 W m-2, up to 12 % of the total climate forcing in 2019 compared to 1750 according to IPCC

    Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP

    Get PDF
    The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood, and uncertainty in climate model results persists, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. We synthesize current challenges and emphasize opportunities for advancing our understanding of the interactions between atmospheric composition, air quality, and climate change, as well as for quantifying model diversity. Our perspective is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specializations across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation–response paradigm through multi-model ensembles of Earth system models of varying complexity. We discuss the challenges of gaining insights from Earth system models that face computational and process representation limits and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible and machine learning approaches where they are needed, e.g., for faster and better subgrid-scale parameterizations and pattern recognition in big data. New model constraints can arise from augmented observational products that leverage multiple datasets with machine learning approaches. Future MIPs can develop smart experiment protocols that strive towards an optimal trade-off between the resolution, complexity, and number of simulations and their length and, thereby, help to advance the understanding of climate change and its impacts
    corecore