134 research outputs found

    Prevalence of Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma in Upper Egypt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudoexfoliation (PXF) is a recognized risk factor for developing cataract, glaucoma and lens dislocation. PXF is also associated with increased risk of complications during cataract surgery due to poor mydriasis and zonular weakness. The aim of this study is to report the prevalence of pseudoexfoliation among Upper Egyptians attending the ophthalmology clinic of Assiut University Hospital.</p> <p>Methodology</p> <p>A retrospective, chart review study conducted in the period from February 2002 to August 2009. A total of 7738 patients aged 40 years or older attending the general ophthalmic clinics were included in this study. A detailed evaluation including ophthalmic and general history, slit lamp biomicroscopy, intraocular pressure measurement, gonioscopy and dilated eye examination were performed. Patients with pseudoexfoliative material on the anterior lens surface and ⁄ or the pupillary margin in either or both eyes were labeled as having PXF.</p> <p>Results</p> <p>Out of the 7738 patients included, three hundred twenty (4.14%) subjects had PXF. Mean age of PXF group was 68.15 years (SD 8.16, range 40-92 years). PXF was bilateral in 82.2% of cases. It was significantly associated with cataract, glaucoma and hearing loss. Of the PXF patients, 65% had cataract, 30.3% had glaucoma and 8.1% had hearing loss.</p> <p>Conclusion</p> <p>Pseudoexfoliation appears to be a common disorder in older individuals in Upper Egypt.</p

    Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions

    Get PDF
    Since its founding in 1993 the International Long-term Ecological Research Network (ILTER) has gone through pronounced development phases. The current network comprises 44 active member LTER networks representing 700 LTER Sites and ~ 80 LTSER Platforms across all continents, active in the fields of ecosystem, critical zone and socio-ecological research. The critical challenges and most important achievements of the initial phase have now become state-of-the-art in networking for excellent science. At the same time increasing integration, accelerating technology, networking of resources and a strong pull for more socially relevant scientific information have been modifying the mission and goals of ILTER. This article provides a critical review of ILTER's mission, goals, development and impacts. Major characteristics, tools, services, partnerships and selected examples of relative strengths relevant for advancing ILTER are presented. We elaborate on the tradeoffs between the needs of the scientific community and stakeholder expectations. The embedding of ILTER in an increasingly collaborative landscape of global environmental observation and ecological research networks and infrastructures is also reflected by developments of pioneering regional and national LTER networks such as SAEON in South Africa, CERN/CEOBEX in China, TERN in Australia or eLTER RI in Europe. The primary role of ILTER is currently seen as a mechanism to investigate ecosystem structure, function, and services in response to a wide range of environmental forcings using long-term, place-based research. We suggest four main fields of activities and advancements for the next decade through development/delivery of a: (1) Global multi-disciplinary community of researchers and research institutes; (2) Strategic global framework and strong partnerships in ecosystem observation and research; (3) Global Research Infrastructure (GRI); and (4) a scientific knowledge factory for societally relevant information on sustainable use of natural resources

    Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective

    Get PDF
    The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a “PEEX region”. It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land–atmosphere–ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially “the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change” and the “socio-economic development to tackle air quality issues”

    Joint Workshop on Confounding Factors in Recovery from Acid Depositon in Surface Waters, 9-10 October 2006, Bergen, Norway; Summary and Abstracts (ICP Waters report 88/2006)

    Get PDF
    Statens ForurensningstilsynUnited Nations Economic Commission for Europe (UNECE)Swedish Environmental Protection AgencyMinistry of the Environment, FinlandCommission of European Communities, Directorate General for Researc
    corecore