259 research outputs found
An investigation into grid patching techniques
In the past decade significant advances were made using flow field methods in the calculation of external transonic flows over aerodynamic configurations. It is now possible to calculate inviscid transonic flow over three dimensional configurations by solving the potential equation. However, with the exception of the transonic small disturbance methods which have the advantage of a simple cartesian grid, the configurations over which it is possible to calculate such flows are relatively simple. The major reason for this is the difficulty of producing compatibility between grid generation and flow equation solutions. The main programs in use, use essentially analytic transformations for prescribed configurations and, as such, are not easy to extend. While there is work in progress to extend this type of system to a limited extent, the long term effort is directed towards a more general approach. This approach should not be restricted to producing grid systems in isolation but rather a consideration of the overall problem of flow field solution
SELDI-TOF-MS ProteinChip array profiling of T-cell clones propagated in long-term culture identifies human profilin-1 as a potential bio-marker of immunosenescence
<p>Abstract</p> <p>Background</p> <p>The adaptive immune response requires waves of T-cell clonal expansion on contact with pathogen and elimination after clearance of the source of antigen. However, lifelong persistent infections with common viruses cause chronic antigenic stimulation which takes its toll on adaptive immunity in late life. Chronic antigenic stress results in deregulation of the T-cell response and accumulation of anergic cells. Longitudinal studies of the elderly show that this impacts on survival. Identifying the nature of the defects in chronically-stimulated T-cells and protein bio-markers of these dysfunctional cells would help to understand age-associated compromised T-cell function (immunosenescence) and facilitate the development of targeted intervention strategies.</p> <p>The purpose of this work was to use surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) to analyse proteins associated with T-cell senescence in order to identify potential bio-markers. Clonal populations of T-cells isolated from elderly octogenarian and centenarian donors were grown <it>in vitro </it>until senescence, and early passage and late passage (pre-senescent) cells were analysed using SELDI-TOF-MS ProteinChip arrays.</p> <p>Results</p> <p>Discriminant analysis identified several protein or peptide peaks in the region of 14.5–16.5 kDa that were associated with T-cell clone senescence. Human profilin-1, a ubiquitous protein associated with actin remodelling and cellular motility was unambiguously identified. Altered expression of profilin-1 in senescent T-cell clones was confirmed by Western blot analysis.</p> <p>Conclusion</p> <p>Due to the proposed roles of profilin-1 in cellular survival, cytoskeleton remodelling, motility, and proliferation, it is hypothesised that differential expression of profilin-1 in ageing may contribute directly to immunosenescence.</p
Recommended from our members
The τ-plot, a multicomponent 1-D pole figure plot, to quantify the heterogeneity of plastic deformation
An approach is presented that allows multi-scale characterisations of heterogeneous deformation in crystalline materials by employing a range of characterisation techniques including: electron backscatter diffraction, digital image correlation and neutron diffraction powder measurements. The approach will be used to obtain critical information about the variations in parameters that characterise the deformed state in different crystallographic orientation texture components of a sample in a statistically significant way. These parameters include lattice strains, texture evolution, peak broadening, dislocation density, planar faults, phase changes and surface strain. This approach allows verification of models of plastic deformation to provide a more detailed view of plastic deformation heterogeneity at multiple length scales than obtained by other characterisation approaches. The approach demonstrated here is applied to two stainless steel alloys; an alloy that exhibits phase transformation during deformation and an alloy that remains the same phase all through deformation process
International perspectives on the future of geography education: an analysis of national curricula and standards
Geography as a school subject is expressed in a wide variety of ways across different national jurisdictions. This article explores some of the issues arising from attempts to represent geography as a subject for study in schools through the organisational structures offered by national standards and/or national curricula. It serves as an introduction to this special issue, which primarily concerns itself with the contemporary analysis of geography education in seven national settings across the globe.
We stress the importance of considering political, cultural, social and philosophical traditions when analysing the curriculum choices made for geography education. Although it may be assumed that geography as a disciplinary specialism is concerned with a body of knowledge that is common across the globe, the creative tensions generated between the disciplines, educational trends and matters of social or policy concern play out differently, making comparisons across jurisdictions hazardous. Understanding this, we argue, is of great significance to those who plan and shape the geography curriculum. Despite the difficulties we hope to offer something more useful than a series of descriptions of geography teaching in different national settings. The purpose of this paper is to introduce a set of robust and irresistible arguments for the inclusion of the study of geography in schools. We argue that geographical knowledge is a vital component of the education of young people across the globe, even though it may be expressed in different ways in different national settings
Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: an observational study
BACKGROUND:
A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry.
METHODS:
Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening.
RESULTS:
About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95–100) to 100% and specificity from 99% (95% CI 97–100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76–87) to 94% (95% CI 89–98) and specificity ranging from 76% (95% CI 70–82) to 92% (95% CI 88–96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only.
CONCLUSIONS:
People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people.
Trial Registration NCT04509713 (clinicaltrials.gov)
NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system
Human aging is characterized by changes in the immune system which have a profound impact on the T-cell compartment. These changes are more frequently found in CD8+ T cells, and there are not well-defined markers of differentiation in the CD4+ subset. Typical features of cell immunosenescence are characteristics of pathologies in which the aberrant expression of NKG2D in CD4+ T cells has been described. To evaluate a possible age-related expression of NKG2D in CD4+ T cells, we compared their percentage in peripheral blood from 100 elderly and 50 young adults. The median percentage of CD4+ NKG2D+ in elders was 5.3% (interquartile range (IR): 8.74%) versus 1.4% (IR: 1.7%) in young subjects (p < 0.3 × 10−10). CD28 expression distinguished two subsets of CD4+ NKG2D+ cells with distinct functional properties and differentiation status. CD28+ cells showed an immature phenotype associated with high frequencies of CD45RA and CD31. However, most of the NKG2D+ cells belonged to the CD28null compartment and shared their phenotypical properties. NKG2D+ cells represented a more advanced stage of maturation and exhibited greater response to CMV (5.3 ± 3.1% versus 3.4 ± 2%, p = 0.037), higher production of IFN-γ (40.56 ± 13.7% versus 24 ± 8.8%, p = 0.015), lower activation threshold and reduced TREC content. Moreover, the frequency of the CD4+ NKG2D+ subset was clearly related to the status of the T cells. Higher frequencies of the NKG2D+ subset were accompanied with a gradual decrease of NAIVE and central memory cells, but also with a higher level of more differentiated subsets of CD4+ T cells. In conclusion, CD4+ NKG2D+ represent a subset of highly differentiated T cells which characterizes the senescence of the immune system
Memetic electromagnetism algorithm for surface reconstruction with rational bivariate Bernstein basis functions
Surface reconstruction is a very important issue with outstanding applications in fields such as medical imaging (computer tomography, magnetic resonance), biomedical engineering (customized prosthesis and medical implants), computer-aided design and manufacturing (reverse engineering for the automotive, aerospace and shipbuilding industries), rapid prototyping (scale models of physical parts from CAD data), computer animation and film industry (motion capture, character modeling), archaeology (digital representation and storage of archaeological sites and assets), virtual/augmented reality, and many others. In this paper we address the surface reconstruction problem by using rational Bézier surfaces. This problem is by far more complex than the case for curves we solved in a previous paper. In addition, we deal with data points subjected to measurement noise and irregular sampling, replicating the usual conditions of real-world applications. Our method is based on a memetic approach combining a powerful metaheuristic method for global optimization (the electromagnetism algorithm) with a local search method. This method is applied to a benchmark of five illustrative examples exhibiting challenging features. Our experimental results show that the method performs very well, and it can recover the underlying shape of surfaces with very good accuracy.This research is kindly supported by the Computer Science National Program of the Spanish Ministry of Economy and Competitiveness, Project #TIN2012-30768, Toho University, and the University of Cantabria. The authors are particularly grateful to the Department of Information Science of Toho University for all the facilities given to carry out this work. We also thank the Editor and the two anonymous reviewers who helped us to improve our paper with several constructive comments and suggestions
Influence of country and city images on students’ perception of host universities and their satisfaction with the assigned destination for their exchange programmes
ABSTRACT: This research focuses on the effect that country image, city image and university image has on students’ a priori satisfaction with the assigned destination for their international exchange programme (Bachelor and Master). In particular, this study establishes six hypotheses related to the causal relationships among the different typologies of image and their effects on students’ satisfaction with the assigned destination to study at least one semester in a host university. In order to contrast these hypotheses, a quantitative research was carried out in the Spanish city of Santander (Spain), by obtaining a sample of 245 international students who participated in an exchange programme at the University of Cantabria. The research findings are: (1) students’ satisfaction with the assigned destination is positively influenced by the university image; (2) the university image is positively influenced by the city image; and (3) the city image is positively influenced by the country image
Adaptive isogeometric analysis for phase‐field modeling of anisotropic brittle fracture
The surface energy a phase‐field approach to brittle fracture in anisotropic materials is also anisotropic and gives rise to second‐order gradients in the phase field entering the energy functional. This necessitates C 1 continuity of the basis functions which are used to interpolate the phase field. The basis functions which are employed in isogeometric analysis (IGA), such as nonuniform rational B‐splines and T‐splines naturally possess a higher order continuity and are therefore ideally suited for phase‐field models which are equipped with an anisotropic surface energy. Moreover, the high accuracy of spline discretizations, also relative to their computational demand, significantly reduces the fineness of the required discretization. This holds a fortiori if adaptivity is included. Herein, we present two adaptive refinement schemes in IGA, namely, adaptive local refinement and adaptive hierarchical refinement, for phase‐field simulations of anisotropic brittle fracture. The refinement is carried out using a subdivision operator and exploits the Bézier extraction operator. Illustrative examples are included, which show that the method can simulate highly complex crack patterns such as zigzag crack propagation. An excellent agreement is obtained between the solutions from global refinement and adaptive refinement, with a reasonable reduction of the computational effort when using adaptivity
- …