6,695 research outputs found

    Early Social Interaction: A Case Comparison of Developmental Pragmatics and Psychoanalytic Theory

    Get PDF
    This book brings together various threads of the research work I have been involved with over a number of years. This research is based on a longitudinal video recorded study of one ofmydaughters as shewas learning howto talk. The impetus for engaging in this work arose from a sense that within developmental psychology and child language, when people are interested in understanding howchildren use language, they seem over-focused or concerned with questions of formal grammar and semantics. My interest is on understanding how a child learns to talk and through this process is then understood as being or becoming a member of a culture. When a young child is learning how to engage in everyday interaction she has to acquire those competencies that allow her to be simultaneously oriented to the conventions that inform talk-ininteraction and at the same time deal with the emotional or affective dimensions of her experience. It turns out that in developmental psychology these domains are traditionally studied separately or at least by researchers whose interests rarely overlap. In order to understand better early social relations (parent–child interaction), I want to pursue the idea that we will benefit by studying both early pragmatic development and emotional development. Not surprisingly, the theoretical positions underlying the study of these domains provide very different accounts of human development and this book illuminates why this might be the case. What follows will I hope serve as a case-study on the interdependence between the analysis of social interaction and subsequent interpretation

    A random matrix decimation procedure relating β=2/(r+1)\beta = 2/(r+1) to β=2(r+1)\beta = 2(r+1)

    Full text link
    Classical random matrix ensembles with orthogonal symmetry have the property that the joint distribution of every second eigenvalue is equal to that of a classical random matrix ensemble with symplectic symmetry. These results are shown to be the case r=1r=1 of a family of inter-relations between eigenvalue probability density functions for generalizations of the classical random matrix ensembles referred to as β\beta-ensembles. The inter-relations give that the joint distribution of every (r+1)(r+1)-st eigenvalue in certain β\beta-ensembles with β=2/(r+1)\beta = 2/(r+1) is equal to that of another β\beta-ensemble with β=2(r+1)\beta = 2(r+1). The proof requires generalizing a conditional probability density function due to Dixon and Anderson.Comment: 19 pages, 1 figur

    Vortex-loop calculation of the specific heat of superfluid ^{4}He under pressure.

    Get PDF
    Vortex-loop renormalization is used to compute the specific heat of superfluid ^{4}He near the lambda point at various pressures up to 26 bars. The input parameters are the pressure dependence of T_{λ} and the superfluid density, which determine the nonuniversal parameters of the vortex core energy and core size. The results for the specific heat are found to be in good agreement with experimental data, matching the expected universal pressure dependence to within about 5%. The nonuniversal critical amplitude of the specific heat is found to be in reasonable agreement, a factor of four larger than the experiments. We point out problems with recent Gross-Pitaevskii simulations that claimed the vortex-loop percolation temperature did not match the critical temperature of the superfluid phase transition

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Random walks and random fixed-point free involutions

    Full text link
    A bijection is given between fixed point free involutions of {1,2,...,2N}\{1,2,...,2N\} with maximum decreasing subsequence size 2p2p and two classes of vicious (non-intersecting) random walker configurations confined to the half line lattice points l≥1l \ge 1. In one class of walker configurations the maximum displacement of the right most walker is pp. Because the scaled distribution of the maximum decreasing subsequence size is known to be in the soft edge GOE (random real symmetric matrices) universality class, the same holds true for the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page

    The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source

    Full text link
    In classical random matrix theory the Gaussian and chiral Gaussian random matrix models with a source are realized as shifted mean Gaussian, and chiral Gaussian, random matrices with real (β=1)(\beta = 1), complex (β=2)\beta = 2) and real quaternion (β=4(\beta = 4) elements. We use the Dyson Brownian motion model to give a meaning for general β>0\beta > 0. In the Gaussian case a further construction valid for β>0\beta > 0 is given, as the eigenvalue PDF of a recursively defined random matrix ensemble. In the case of real or complex elements, a combinatorial argument is used to compute the averaged characteristic polynomial. The resulting functional forms are shown to be a special cases of duality formulas due to Desrosiers. New derivations of the general case of Desrosiers' dualities are given. A soft edge scaling limit of the averaged characteristic polynomial is identified, and an explicit evaluation in terms of so-called incomplete Airy functions is obtained.Comment: 21 page

    Correlations in two-component log-gas systems

    Full text link
    A systematic study of the properties of particle and charge correlation functions in the two-dimensional Coulomb gas confined to a one-dimensional domain is undertaken. Two versions of this system are considered: one in which the positive and negative charges are constrained to alternate in sign along the line, and the other where there is no charge ordering constraint. Both systems undergo a zero-density Kosterlitz-Thouless type transition as the dimensionless coupling Γ:=q2/kT\Gamma := q^2 / kT is varied through Γ=2\Gamma = 2. In the charge ordered system we use a perturbation technique to establish an O(1/r4)O(1/r^4) decay of the two-body correlations in the high temperature limit. For Γ→2+\Gamma \rightarrow 2^+, the low-fugacity expansion of the asymptotic charge-charge correlation can be resummed to all orders in the fugacity. The resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys. Shortened version of abstract belo
    • …
    corecore