The Hammersley process relates to the statistical properties of the maximum
length of all up/right paths connecting random points of a given density in the
unit square from (0,0) to (1,1). This process can also be interpreted in terms
of the height of the polynuclear growth model, or the length of the longest
increasing subsequence in a random permutation. The cumulative distribution of
the longest path length can be written in terms of an average over the unitary
group. Versions of the Hammersley process in which the points are constrained
to have certain symmetries of the square allow similar formulas. The derivation
of these formulas is reviewed. Generalizing the original model to have point
sources along two boundaries of the square, and appropriately scaling the
parameters gives a model in the KPZ universality class. Following works of Baik
and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled
cumulative distribution, in which a particular Painlev\'e II transcendent plays
a prominent role.Comment: 27 pages, 5 figure