226 research outputs found

    Effect of Passive Heating on Males and Females with Elevated Arterial Stiffness

    Get PDF
    Context: Cardiovascular disease (CVD) is one of the leading causes of mortality in the United States, accounting for about 1 in every 4 deaths annually. Studies have shown that passive heating does have some degree of effect on arterial stiffness, but not much is known about populations with higher stiffness. Objective: To examine the independent effect of core temperature increase during passive heating on arterial stiffness. Methods: Participants visited the lab three times; one familiarization and two experimental trials. The experimental trials consisted of subjects being passively heated in an environment of 40°C / 40% relative humidity (HEAT) or normal laboratory conditions (CONTROL). Participants were 48.9 ± 12.0 years old of age, 66.7± 12.6 kg, 168.2 ±8.8 cm, and 7.7 ± 2.0 m/s central pulse wave velocity. Main Outcome Measures: Before and after passive heating, pulse wave velocity (PWV measures occurred via ultrasound at the tibial, radial, femoral and carotid artery sites). At the same time, rectal temperature (Trec) was measured. Trec was measured with rectal thermistors; differences between trials confirm the changes that occurred as a result of environmental conditions. Central arterial stiffness was assessed by using measures between the carotid and femoral artery sites, while peripheral stiffness was assessed using the radial and tibial artery sites. The radial site was used for upper peripheral arterial stiffness and the tibial site was used for lower peripheral arterial stiffness. Results: Trec at the end of passive heating showed significant differences between the CONTROL and PASSIVE HEAT trials respectively (36.53 ± .16 vs. 38.14 ± .49°C; p \u3c 0.001). There were no interactions (p\u3e0.05) between time and condition for central pulse wave velocity (∆ 1.83 ± 50.44 vs. 3.25 ± 67.34 cm/s; for control and passive heating respectively), upper peripheral (∆ 51.50 ± 60.87 vs. 92.77 ± 82.81 cm/s), and lower peripheral pulse wave velocities (∆ 46.99 ± 68.55 vs. 23.70 ± 156.67 cm/s). Conclusions: The findings of this study indicate that differences in mean body temperature do not result in significant decreases in arterial stiffness following passive heating in individuals with poor arterial stiffness at baseline

    Detection and Analysis of the Bacterium, Xylella fastidiosa, in Glassy-Winged Sharpshooter, Homalodisca vitripennis, Populations in Texas

    Get PDF
    The glassy-winged sharpshooter, Homalodisca vitripeninis Germar (Hemiptera: Cicadellidae), is a xylophagous insect that is an endemic pest of several economically important plants in Texas. H. vitripennis is the main vector of Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the bacterium that causes Pierce's disease of grapevine and can travel long distances putting much of Texas grape production at risk. Understanding the movement of H. vitripennis populations capable of transmitting X. fastidiosa into Pierce's-disease-free areas is critical for developing a management program for Pierce's disease. To that end, the USDA-APHIS has developed a program to sample vineyards across Texas to monitor populations of H. vitripennis. From this sampling, H vitripennis collected during 2005 and 2006 over the months of May, June, and July from eight vineyards in different regions of Texas were recovered from yellow sticky traps and tested for the presence of X. fastidiosa. The foregut contents were vacuum extracted and analyzed using RT-PCR to determine the percentage of H. vitripennis within each population that harbor X. fastidiosa and have the potential to transmit this pathogen. H. vitripennis from vineyards known to have Pierce's disease routinely tested positive for the presence of X. fastidiosa. While almost all H. vitripennis collected from vineyards with no history of Pierce's disease tested negative for the presence of the pathogen, three individual insects tested positive. Furthermore, all three insects were determined, by DNA sequencing, to be carrying a strain of X. fastidiosa homologous to known Pierce's disease strains, signifying them as a risk factor for new X. fastidiosa infections

    Paths to research-driven decision making in the realms of environment and water

    Get PDF
    Now more than ever it is critical for researchers and decision makers to work together to improve how we manage and preserve the planet\u27s natural resources. Water managers in the western U.S., as in many regions of the world, are facing unprecedented challenges including increasing water demands and diminishing or unpredictable supplies. The transfer of knowledge (KT) and technology (TT) between researchers and entities that manage natural resources can help address these issues. However, numerous barriers impede the advancement of such transfer, particularly between organizations that do not operate in a profit-oriented context and for which best practices for university-industry collaborative engagement may not be sufficient. Frameworks designed around environmental KT – such as the recently-developed Research-Integration-Utilization (RIU) model – can be leveraged to address these barriers. Here, we examine two examples in which NASA Earth science satellite data and remote-sensing technology are used to improve the management of water availability and quality. Despite differences in scope and outcomes, both of these case studies adopt KT and TT best practices and can be further understood through the lens of the RIU model. We show how these insights could be adopted by NASA through a conceptual framework that charts individual- and organizational-level integration milestones alongside technical milestones. Environmental organizations can learn from this approach and adapt it to fit their own institutional needs, integrating KT/TT models and best practices while recognizing and leveraging existing institutional logics that suit their organization\u27s unique history, technical capability and priorities

    LkHα\alpha 330: Evidence for dust clearing through resolved submillimeter imaging

    Get PDF
    Mid-infrared spectrophotometric observations have revealed a small sub-class of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model dependent method of finding central holes. We present here the direct characterization of a 40 AU radius inner gap in the disk around LkHa 330 through 340 GHz (880 micron) dust continuum imaging with the Submillimeter Array (SMA). This large gap is fully resolved by the SMA observations and mostly empty of dust with less than 1.3 x 10^-6 M_solar of solid particles inside of 40 AU. Gas (as traced by accretion markers and CO M-band emission) is still present in the inner disk and the outer edge of the gap rises steeply -- features in better agreement with the underlying cause being gravitational perturbation than a more gradual process such as grain growth. Importantly, the good agreement of the spatially resolved data and spectrophometry-based model lends confidence to current interpretations of SEDs with significant dust emission deficits as arising from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.Comment: 11 pages, 3 figures, accepted to ApJ

    The Grizzly, April 24, 2003

    Get PDF
    Queen Noor to Address Ursinus Graduates • Car-Sharing with Zipcar: the Newest Way to Travel • New Orientation Assistants Chosen • Opinions: Human Life Impossible?; Is Campus Parking Really a Big Deal?; Room Lottery and Selection: No Hard Feelings • Behind the Scenes of Psycho Beach Party • Greek Week • Women\u27s Lacrosse Starting to Heat Up • UC Softball Drops Two to Haverfordhttps://digitalcommons.ursinus.edu/grizzlynews/1536/thumbnail.jp

    Coronary artery endothelial dysfunction is positively correlated with low density lipoprotein and inversely correlated with high density lipoprotein subclass particles measured by nuclear magnetic resonance spectroscopy.

    Get PDF
    OBJECTIVE: The association between cholesterol and endothelial dysfunction remains controversial. We tested the hypothesis that lipoprotein subclasses are associated with coronary endothelial dysfunction. METHODS AND RESULTS: Coronary endothelial function was assessed in 490 patients between November 1993 and February 2007. Fasting lipids and nuclear magnetic resonance (NMR) lipoprotein particle subclasses were measured. There were 325 females and 165 males with a mean age of 49.8+/-11.6 years. Coronary endothelial dysfunction (epicardial constriction>20% or increase in coronary blood flow<50% in response to intracoronary acetylcholine) was diagnosed in 273 patients, the majority of whom (64.5%) had microvascular dysfunction. Total cholesterol and LDL-C (low density lipoprotein cholesterol) were not associated with endothelial dysfunction. One-way analysis and multivariate methods adjusting for age, gender, diabetes, hypertension and lipid-lowering agent use were used to determine the correlation between lipoprotein subclasses and coronary endothelial dysfunction. Epicardial endothelial dysfunction was significantly correlated with total (p=0.03) and small LDLp (LDL particles) (p<0.01) and inversely correlated with total and large HDLp (high density lipoprotein particles) (p<0.01). CONCLUSIONS: Epicardial, but not microvascular, coronary endothelial dysfunction was associated directly with LDL particles and inversely with HDL particles, suggesting location-dependent impact of lipoprotein particles on the coronary circulation

    The Grizzly, December 5, 2002

    Get PDF
    Putting the Art Back in a Liberal Arts Education • Celebrating the Holidays Around the World • There is no Need to be Violent • Stress Triggers at Ursinus College • Stress Busters • Fear vs. Phobia • Graduates: Trying to Find a Job that Pays • Sober for Good • Unexpected Difference • Children Violent with Other Children • Gymnastics Team has High Expectations • How do Ursinus Athletes Prevent Injuries? • Luciano Named CC and ECAC Player of the Week • Final Exam Schedulehttps://digitalcommons.ursinus.edu/grizzlynews/1527/thumbnail.jp

    The Abundance of Short Proteins in the Mammalian Proteome

    Get PDF
    Short proteins play key roles in cell signalling and other processes, but their abundance in the mammalian proteome is unknown. Current catalogues of mammalian proteins exhibit an artefactual discontinuity at a length of 100 aa, so that protein abundance peaks just above this length and falls off sharply below it. To clarify the abundance of short proteins, we identify proteins in the FANTOM collection of mouse cDNAs by analysing synonymous and non-synonymous substitutions with the computer program CRITICA. This analysis confirms that there is no real discontinuity at length 100. Roughly 10% of mouse proteins are shorter than 100 aa, although the majority of these are variants of proteins longer than 100 aa. We identify many novel short proteins, including a “dark matter” subset containing ones that lack detectable homology to other known proteins. Translation assays confirm that some of these novel proteins can be translated and localised to the secretory pathway

    The psychiatric risk gene transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability

    Get PDF
    Background Common genetic variants in and around the gene encoding transcription factor 4 (TCF4) are associated with an increased risk of schizophrenia. Conversely, rare damaging TCF4 mutations cause Pitt–Hopkins syndrome and have also been found in individuals with intellectual disability (ID) and autism spectrum disorder (ASD). Methods Chromatin immunoprecipitation and next generation sequencing were used to identify the genomic targets of TCF4. These data were integrated with expression, epigenetic and disease gene sets using a range of computational tools. Results We identify 10604 TCF4 binding sites in the genome that were assigned to 5437 genes. De novo motif enrichment found that most TCF4 binding sites contained at least one E-box (5′-CAtcTG). Approximately 77% of TCF4 binding sites overlapped with the H3K27ac histone modification for active enhancers. Enrichment analysis on the set of TCF4 targets identified numerous, highly significant functional clusters for pathways including nervous system development, ion transport and signal transduction, and co-expression modules for genes associated with synaptic function and brain development. Importantly, we found that genes harboring de novo mutations in schizophrenia (P = 5.3 × 10−7), ASD (P = 2.5 × 10−4), and ID (P = 7.6 × 10−3) were also enriched among TCF4 targets. TCF4 binding sites were also found at other schizophrenia risk loci including the nicotinic acetylcholine receptor cluster, CHRNA5/CHRNA3/CHRNB4 and SETD1A. Conclusions These data demonstrate that TCF4 binding sites are found in a large number of neuronal genes that include many genetic risk factors for common neurodevelopmental disorders
    corecore