41 research outputs found

    AC small signal modeling of PWM Y-source converter by circuit averaging and averaged switch modeling technique

    Full text link
    © 2016 IEEE and EPE Association. Magnetically coupled Y-source impedance network is a newly proposed structure with versatile features intended for various power converter applications e.g. in the renewable energy technologies. The voltage gain of the Y-source impedance network rises exponentially as a function of turns ratio, which is inherited from a special coupled inductor with three windings. Due to the importance of modeling in the converter design procedure, this paper is dedicated to dc and ac small signal modeling of the PWM Y-source converter. The derived transfer functions are presented in detail and have been verified through simulation and experimental results

    A Classification of Single-Phase Transformerless Inverter Topologies for Photovoltaic Applications

    Full text link
    © 2018 IEEE. In Photovoltaic (PV) applications, a transformer is often used to provide galvanic isolation and voltage ratio transformations. However, a transformer based inverter is bulky and has high conduction losses, therefore lead to a reduction in the inverter efficiency. To overcome this issue, the transformerless inverter topologies are addressed widely, but the main challenge of a transformerless inverter is common mode issue. Numerous topological modifications with their control and modulation techniques makes them difficult to follow, generalize and highlight the advantages and disadvantages. To address the issue, this paper gives an overview on transformerless inverter and classify them into subsection to discuss the merit and demerit of some of the major topologies. Five subsections based on common mode behavior, voltage clamping and decoupling techniques have been demonstrated (i.e., common ground, mid-point clamping, AC-decoupling, DC-decoupling and AC+DC decoupling). To verify the finding and for general consensus, major transformerless topologies are simulated using PLECS. A general summary is presented at the end to stimulate readers to acknowledge the problems and identify solutions

    Free vibration analysis and design optimization of SMA/Graphite/Epoxy composite shells in thermal environments

    Get PDF
    Composite shells, which are being widely used in engineering applications, are often under thermal loads. Thermal loads usually bring thermal stresses in the structure which can significantly affect its static and dynamic behaviors. One of the possible solutions for this matter is embedding Shape Memory Alloy (SMA) wires into the structure. In the present study, thermal buckling and free vibration of laminated composite cylindrical shells reinforced by SMA wires are analyzed. Brinson model is implemented to predict the thermo-mechanical behavior of SMA wires. The natural frequencies and buckling temperatures of the structure are obtained by employing Generalized Differential Quadrature (GDQ) method. GDQ is a powerful numerical approach which can solve partial differential equations. A comparative study is carried out to show the accuracy and efficiency of the applied numerical method for both free vibration and buckling analysis of composite shells in thermal environment. A parametric study is also provided to indicate the effects of like SMA volume fraction, dependency of material properties on temperature, lay-up orientation, and pre-strain of SMA wires on the natural frequency and buckling of Shape Memory Alloy Hybrid Composite (SMAHC) cylindrical shells. Results represent the fact that SMAs can play a significant role in thermal vibration of composite shells. The second goal of present work is optimization of SMAHC cylindrical shells in order to maximize the fundamental frequency parameter at a certain temperature. To this end, an eight-layer composite shell with four SMA-reinforced layers is considered for optimization. The primary optimization variables are the values of SMA angles in the four layers. Since the optimization process is complicated and time consuming, Genetic Algorithm (GA) is performed to obtain the orientations of SMA layers to maximize the first natural frequency of structure. The optimization results show that using an optimum stacking sequence for SMAHC shells can increase the fundamental frequency of the structure by a considerable amount

    Fuzzy Semi-Maximal and Fuzzy Radical Ideals in MV-Algebras

    No full text

    N

    No full text

    Some Results on MV

    No full text

    A Novel Single-Phase Flying-Inductor Buck-Boost Inverter

    Full text link
    © 2019 The Korean Institute of Power Electronics (KIPE). In this paper a new single-phase flying-inductor buck-boost inverter is proposed. The inverter operates on the principle of flying-inductor, and it has the capability to buck or boost the input voltage without increasing the number of required components. In addition, the inverter is free from electrolytic capacitors, which helps to improve reliability and lifetime of the inverter. The operating principle of the proposed inverter has been analyzed and discussed. Finally, experimental results from a 250 W prototype validates the performance of the proposed topology

    A Novel Full Soft-Switching High-Gain DC/DC Converter Based on Three-Winding Coupled-Inductor

    Get PDF
    In this article, a new nonisolated full soft-switching step-up dc/dc converter is introduced with a continuous input current for renewable energy applications. The use of a three-winding coupled-inductor (TWCI) along with a voltage multiplier, enables the proposed converter to enhance the voltage gain with lower turns ratios and duty cycles. Also, a lossless regenerative passive clamp circuit is employed to limit the voltage stress across the power switch. In addition to zero current switching performance at the turn-on instant of the power switch, the turn-off current value is also alleviated by adopting a quasi-resonance operation between the leakage inductor of the TWCI and middle capacitors. Moreover, the current of all diodes reaches zero with a slow slew rate, which leads to the elimination of the reverse recovery problem in the converter. Soft-switching of the power switch and all the diodes in the proposed converter significantly reduces the switching power dissipations. Therefore, the presented converter can provide a high voltage gain ratio with high efficiency. Steady-state analysis, comprehensive comparisons with other related converters, and design considerations are discussed in detail. Finally, a 160 W prototype with 200 V output voltage is demonstrated to justify the theoretical analysis

    Small-Signal Modeling and Comprehensive Analysis of Magnetically Coupled Impedance-Source Converters

    Get PDF
    © 2016 IEEE. Magnetically coupled impedance-source (MCIS) networks are recently introduced impedance networks intended for various high-boost applications. It employs coupled magnetic in the circuit to achieve higher voltage gain. Various MCIS networks have been proposed in the literature for myriad applications; however, due to effective role of system modeling in the closed-loop controller design, this paper is allocated to small-signal modeling and analysis of MCIS converters. The modeling is performed by means of the circuit averaging and averaged switch technique. A generalized small-signal derivation is demonstrated for pulse width modulation (PWM) MCIS converters and it is shown that the derived transfer functions can simply be applied to Y-source, Γ-source, and T-source impedance networks. Various transfer functions for capacitor voltage, output voltage, magnetizing current, input and output impedance are derived and have been validated through frequency and dynamic responses of computer simulation results. In addition, a comprehensive analysis has been done for all mentioned PWM MCIS converters regarding their circuit parameters. Furthermore, the effect of considering the equivalent series resistances of capacitor and inductor on the stability margin of MCIS converters is revealed in this paper. Finally, in order to validate the derived transfer functions and to consolidate the perfumed analysis, experimental results are presented for all mentioned MCIS converters
    corecore