11 research outputs found

    Comparison of systolic blood pressure measurements by auscultation and visual manometer needle jump

    Get PDF
    International Journal of Exercise Science 12(2): 214-220, 2019. Purpose: This study was designed to investigate differences in systolic blood pressure measurements as obtained through auscultation and observation of the visual jump on the manometer. Methods: Men (n = 21; 26.9 ± 7.4 yrs) and women (n = 22; 29.3 ± 13.9 yrs) volunteered to have resting systolic blood pressure (SBP) assessments. During the same cardiac inflation-deflation cycle of traditional sphygmomanometry, the initial visual jump of the manometer needle and first Korotkoff sound heard were recorded. Duplicate assessments were made in each arm with 30 sec between intra-arm trials. Results: Paired t-test results indicated there were no within-method differences between arms for visual jump (R: 132.1 ± 11.3; L: 131.8 ± 10.5 mmHg) or auscultation (R: 116.8 ± 9.0; L: 113.5 ± 8.8 mmHg). There were methodological differences within arm with visual jump being the higher of the two (right: t(42) = -12.69; left: t(42) = -11.37; p \u3c .001). Conclusion: If visual jump determination of SBP cannot be avoided, re-assessment using a more traditional method (i.e. auscultation) is recommended

    Antiferromagnetism in a family of S=1 square lattice coordination polymers NiX2(pyz)2 (X=Cl, Br, I, NCS; pyz=Pyrazine)

    Get PDF
    The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1–4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1–4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero–field splitting (ZFS) being observed. The magnetism of 1–4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (J⊥) being slightly stronger than the intralayer interaction along Ni–pyz–Ni segments (Jpyz) within the two-dimensional [Ni(pyz)2]2+ square planes. Regardless of X, Jpyz is similar for the four compounds and is roughly 1 K

    Soft Chemical Control of Superconductivity in Lithium Iron Selenide Hydroxides Li1–x_{1–x}Fex_x(OH)Fe1–y_{1–y}Se

    Get PDF
    Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li1–x_{1–x}Fex(OH)Fe1–y_{1–y}Se (x∼\sim0.2; 0.02 < yy < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (yy < 0.05) and when the iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li1–x_{1–x}Fex_x(OH) reservoir layer to fill vacancies in the selenide layer

    Muon spin spectroscopy and high magnetic field studies of novel superconductors and magnetic materials

    No full text
    This thesis investigates a number of novel magnetic materials and high temperature superconductors using high-field magnetometry and muon spin spectroscopy (μSR). The main measurement techniques are briefly described and a study of the dimer material [Cu(pyrazine)(glycine)]ClO4 is presented to demonstrate the use of the proximity detector oscillator as a susceptometer in high magnetic fields. μSR is a highly effective tool for probing magnetic order, spin freezing and spin dynamics. However, in some circumstances its performance may be impaired by the extent to which it perturbs the material under study. Using μSR, density functional theory and crystal field calculations, I identify an experimental situation in the family of candidate quantum spin ices Pr2B2O7 (B = Sn, Zr, and Hf), in which the measured response is dominated by a muon-induced distortion of the local structure. This issue is also addressed in a study of the spin dynamics in the canonical spin ice Ho2Ti2O7. Although computational work indicates a similar muon-induced effect in both Ho2Ti2O7 and Dy2Ti2O7, the μSR data is not dominated by this perturbation. The remainder of this thesis is concerned with studying the superconducting properties of a number of Fe-based materials, including LiFeP which is found to have an enhanced superfluid stiffness in relation to its transition temperature. Also reported is the effect of structural disorder on the superconducting state in recently discovered Sr0.3(NH2)y(NH3)1-yFe2Se2. Pulsed magnetic field measurements are used to probe the temperature dependence of the upper critical field, giving a maximum value of μ0Hc2(0)≈33(2) T. I also investigate the effect of intercalating additional ammonia, via reversible adsorption and desorption in the related superconductor Lix[(NH2)y(NH3)1-y]zFe2Se2 (z = 1, 2). These reactions were carried out in situ on the muon beamline so that the superfluid stiffness could be measured using transverse-field μSR on a single sample.</p

    Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2: Data Archive

    No full text
    Data was acquired during pyrocurrent/magnetocurrent measurements of single-crystal CuFeO2, to investigate ferroelectric polarization at low temperatures and high magnetic fields. A Femto transimpedance amplifier was used to convert the current to a voltage, which was integrated analytically after subtracting a flat background to give the data in the form of Polarization against Magnetic Field/Temperature. Details of the experimental processes can be found in the linked publication

    Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2: Data Archive

    No full text
    Data was acquired during pyrocurrent/magnetocurrent measurements of single-crystal CuFeO2, to investigate ferroelectric polarization at low temperatures and high magnetic fields. A Femto transimpedance amplifier was used to convert the current to a voltage, which was integrated analytically after subtracting a flat background to give the data in the form of Polarization against Magnetic Field/Temperature. Details of the experimental processes can be found in the linked publication

    Implications of bond disorder in a S=1 kagome lattice

    Get PDF
    Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration

    Data for Implications of bond disorder in a S=1 kagome lattice

    No full text
    Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration
    corecore