1,234 research outputs found

    A quantitative estimate of agglutinins in three Shigella flexneri antisera.

    Full text link
    Thesis (Ph.D.)--Boston University.The Flexner group of dysentery organisms contains a number of strains classified together because of their close physiological and serological properties. The serological relationships of this group have been determined qualitatively by Boyd and Wheeler. According to these investigators, each Flexner type is distinguished by the presence in the cell of an antigen characteristic of that type. This antigen is called the "type-specific" antigen. Those antigens, possessed in common by several types, which are responsible for the serological cross reactions are designated as "group antigens". The purpose of this investigation was to study quantitatively (using the method of Heidelberger and Kabat to measure agglutinin nitrogen) the serological cross reactions that occur among Shigella flexneri types Ia, Ib and III. In so far as it seemed practical, a quantitative serological analysis was made of types Ia, Ib and III antisera. The type-specific antibody in each serum and the group "6" antibody in types Ib and III antisera was measured. It is this "group 6" factor, possessed in common by both Ib and III cells, which is responsible for the close serological relationship of these two types. [TRUNCATED

    On the Morphology and Interfaces of Nanostructured Hematite Photoanodes for Solar-Driven Water Splitting

    Get PDF
    A sustainable route to store the energy provided by the Sun, is to directly convert sunlight into molecular hydrogen using a semiconductor performing water photolysis. Hematite (α-Fe2O3) is promising for this application due to its ample abundance, chemical stability and significant light absorption (with a band gap of 2.0 - 2.2 eV). Despite these advantageous properties, several drawbacks restrain the utilization of iron oxide for photoelectrochemical water splitting. The first limitation, namely the conduction band edge lower than the water reduction potential, can be straightforwardly overcome by adding a second solar system in tandem, which can absorb a complementary part of the solar spectrum and bring the electron at an energetic level higher than the hydrogen evolution potential. The second drawback arises from the disaccord between the short charge carrier diffusion length and the large light penetration depth. It is therefore necessary to control the hematite morphology on a length scale similar to the hole transport length. To further enhance the photoelectrochemical performance, a new concept for water splitting is introduced in this thesis. The host-guest approach consists in decoupling the different tasks of the photoanode (on one side light harvesting and water oxidation center, on the other side electron conduction to the substrate) by depositing a thin layer of hematite onto a mesoporous host (WO3 in this study). This concept has been demonstrated to increase the photocurrent by ca. 20% due to enhanced quantum efficiencies at long wavelengths. This demonstration has been nonetheless limited by the iron oxide thin films overall efficiency. Thin films photoactivity is then investigated by two means: first by controlling their nucleation on a modified substrate and secondly by incorporating plasmonic nanoparticles aimed to localize absorption in the thin film. The formation of a SiOx buffer layer on the substrate prior to deposition of hematite by Fe(acac)3 spray is shown to modify the film formation mode and its physical properties. These films exhibit photoactivity from an optical thickness of 12.5 nm (as compared to 25 nm without underlayer). The study of hematite photoanodes with gold nanoparticles, embedded or deposited on its surface, establish that charge transfer from metal nanoparticles is occurring only at overlapping wavelengths between the plasmonic resonance and the semiconductor absorption. Nevertheless, photoelectrochemical performances are reduced because of high recombination rate at the metal/semiconductor interface. Finally the third limitation, i.e. the large overpotential required to observe the onset of water splitting photocurrent, is tackled in the last part. The onset potential of photocurrent is decreased by a very thin coating of Al2O3 (0.1 - 2 nm), deposited by ALD, on the nanostructured photoanode. The subsequent application of the Co2+ catalyst further reduces the overpotential and results in a record photocurrent at 0.9 VRHE of over 0.4 mA cm-2. This investigation clearly distinguishes two causes for this energy loss: surface traps and slow oxidation kinetics. The charge accumulation and the Fermi level pinning, observed at low bias potential and assigned to these surface states were further rationalized in an investigation on photocurrent and photovoltage transients

    Photo-electrochemical Hydrogen Sulfide Splitting using SnIV-doped Hematite Photo-anodes

    Get PDF
    © 2016 The Authors. Published by Elsevier B.V.Spray-pyrolysed SnIV-doped α-Fe2O3 photo-anodes were used for photo-assisted splitting of HS- ions in alkaline aqueous solutions, producing polysulfide (Sn2 -) ions together with hydrogen at the cathode. Subsequent aerial oxidation of polysulfide could be used to produce elemental sulfur. At an applied electrode potential of 1.07 V (RHE) and an irradiance of 5.6 kW m- 2, stable photocurrents of ca. 11 A m- 2 (2 × 10- 3 A W- 1) were recorded over 75 h, polysulfide concentrations increasing linearly with time. Despite being predicted thermodynamically to form iron sulfide(s) in sulfide solutions, such photo-anodes appeared to be stable. In comparison with conventional water splitting under alkaline conditions, the coupled processes of hydrogen sulfide ion oxidation and water reduction had a lower energy requirement

    Photocurrents from photosystem II in a metal oxide hybrid system: electron transfer pathways

    Get PDF
    We have investigated the nature of the photocurrent generated by Photosystem II (PSII), the water oxidizing enzyme, isolated from Thermosynechococcus elongatus, when immobilized on nanostructured titanium dioxide on an indium tin oxide electrode (TiO2/ITO). We investigated the properties of the photocurrent from PSII when immobilized as a monolayer versus multilayers, in the presence and absence of an inhibitor that binds to the site of the exchangeable quinone (QB) and in the presence and absence of exogenous mobile electron carriers (mediators). The findings indicate that electron transfer occurs from the first quinone (QA) directly to the electrode surface but that the electron transfer through the nanostructured metal oxide is the rate-limiting step. Redox mediators enhance the photocurrent by taking electrons from the nanostructured semiconductor surface to the ITO electrode surface not from PSII. This is demonstrated by photocurrent enhancement using a mediator incapable of accepting electrons from PSII. This model for electron transfer also explains anomalies reported in the literature using similar and related systems. The slow rate of the electron transfer step in the TiO2 is due to the energy level of electron injection into the semiconducting material being below the conduction band. This limits the usefulness of the present hybrid electrode. Strategies to overcome this kinetic limitation are discussed

    Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting

    Get PDF
    Given the limitations of the materials available for photoelectrochemical water splitting, a multiphoton (tandem) approach is required to convert solar energy into hydrogen efficiently and durably. Here we investigate a promising system consisting of a hematite photoanode in combination with dye-sensitized solar cells with newly developed organic dyes, such as the squaraine dye, which permit new configurations of this tandem system. Three configurations were investigated: two side-by-side dye cells behind a semitransparent hematite photoanode, two semitransparent dye sensitized solar cells (DSCs) in front of the hematite, and a trilevel hematite/DSC/DSC architecture. Based on the current-voltage curves of state-of-the-art devices made in our laboratories, we found the trilevel tandem architecture (hematite/SQ1 dye/N749 dye) produces the highest operating current density and thus the highest expected solar-to-hydrogen efficiency (1.36% compared with 1.16% with the standard back DSC case and 0.76% for the front DSC case). Further investigation into the wavelength-dependent quantum efficiency of each component revealed that in each case photons lost as a result of scattering and reflection reduce the performance from the expected 3.3% based on the nanostructured hematite photoanodes. We further suggest avenues for the improvement of each configuration from both the DSC and the photoanode part

    Formal reasoning with Verilog HDL

    Get PDF
    Most hardware verification techniques tend to fall under one of two broad, yet separate caps: simulation or formal verification. This paper briefly presents a framework in which formal verification plays a crucial role within the standard approach currently used by the hardware industry. As a basis for this, the formal semantics of Verilog HDL are dened, and properties about synchronization and mutual exclusion algorithms are proved.peer-reviewe

    Challenges in the specification of full contracts

    Get PDF
    Partially supported by the Nordunet3 project “COSoDIS”.The complete specification of full contracts - contracts which include tolerated exceptions, and which enable reasoning about the contracts themselves, can be achieved using a combination of temporal and deontic concepts. In this paper we discuss the challenges in combining deontic and other relevant logics, in particular focusing on operators for choice, obligations over sequences, contrary-to-duty obligations, and how internal and external decisions may be incorporated in an action-based language for specifying contracts. We provide different viable interpretations and approaches for the development of such a sound logic and outline challenges for the future.peer-reviewe
    • …
    corecore