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Abstract—The use of runtime verification, as a lightweight
approach to guarantee properties of systems, has been increas-
ingly employed on real-life software. In this paper, we present
the tool LARVA, for the runtime verification of properties of
Java programs, including real-time properties. Properties can be
expressed in a number of notations, including timed-automata
enriched with stopwatches, Lustre, and a subset of the duration
calculus. The tool has been successfully used on a number of
case-studies, including an industrial system handling financial
transactions. LARVA also performs analysis of real-time proper-
ties, to calculate, if possible, an upper-bound on the memory and
temporal overheads induced by monitoring. Moreover, through
property analysis, LARVA assesses the impact of slowing down the
system through monitoring, on the satisfaction of the properties.

I. INTRODUCTION

A growing area in formal methods is runtime verification
— the monitoring of the program being executed by verifying
the generated events against a set of properties. A particularly
challenging aspect is the monitoring of real-time properties.
Apart from being difficult to express and monitor, an additional
challenge in introducing real-time, is that they are not always
invariant under monitoring. Monitoring introduces overheads
over and above the system, which may have the side effect
of affecting the validity of the properties. In our approach,
we have created a runtime verification architecture called
LARVA.1 This enables the specification of properties, including
real-time, and the monitoring of Java programs against the
specified properties. The tool also performs property analysis
to give feedback regarding the effect of monitoring the given
properties. The tool has been applied to a number of case
studies, including a real-life financial system handling credit
card transactions.

II. LARVA

A runtime verification architecture normally involves the
following five components: (i) a system to be monitored;
(ii) a set of specifications written in some formal notation;
(iii) a stream of events extracted from the system in (i); (iv)
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1The LARVA system, including further documentation and examples, is
available from http://www.cs.um.edu.mt/˜svrg/Tools/LARVA.

a monitoring system which receives the events and verifies
them according to the specification in (ii); and (v) possibly a
feedback loop. The LARVA architecture is no exception and
has the above five components.

A user who wants to monitor a system using LARVA

must supply the system itself — a Java program — and a
set of specifications in the form of a LARVA script — a
textual representation of DATEs [1], similar to timed-automata
enriched with stopwatches. Using the LARVA compiler the
specification is transformed into the equivalent monitoring
code, together with a number of aspects that extract the events
from the system. Aspects are generated in AspectJ, one of the
aspect-oriented implementations for Java, enabling automatic
code injection without directly altering the actual code of the
system. In LARVA, apart from extracting events, aspects are
also used to send feedback to the system. Note that only
Java byte code is necessary for instrumentation, thus LARVA

can monitor third-party software. However, the author of the
properties requires some knowledge of the system source code
since most events in a LARVA script include method names.

Although the ‘native’ logic of LARVA is DATE, the tool
allows for properties to be written in a number of other
logics (which are internally translated into DATEs) for runtime
monitoring. These specification languages and logics include
QDDC [2], Lustre [3] and a subset of the duration calculus
called counterexample traces [4]. The complete architecture is
shown below:

LARVA

DC
Lustre

QDDC

DATE

Weaved Code

Monitoring System

Property Analysis

As an example, consider a system where one needs to
monitor bad logins and the activity of a logged in user. By
having access to badlogin, goodlogin and interact events (each
of which corresponds to a method call in the Java program),
one can keep a successive bad-login counter and a clock
to measure the time a user is inactive. Fig. 1 shows the
specification of a property stating that there are no more than
two successive bad logins and 30 minutes of inactivity when
logged in, expressed as a DATE automaton [1]. Transitions
have three (backslash separated) labels: (i) the event triggering
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interact\\t.reset();

goodlogin

\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin

\c>=2

logged in

inactive

logout\\c=0;

GLOBAL {
VARIABLES {

int c = 0;
Clock t;

}
EVENTS {

badlogin() = {*.badlogin()}
clk() = {t@30*60}
...

}
PROPERTY users {

STATES {
BAD { badlogins inactive }
NORMAL { loggedin }
STARTING { loggedout }

}
TRANSITIONS {
loggedout -> badlogins [badlogin\c>=2\]
loggedout -> loggedin [goodlogin\\t.reset();]
...
loggedout -> loggedout [badlogin\\c++;]
loggedin -> inactive [clk\\]

}
}

}

Fig. 1. The automaton and LARVA code of the bad logins scenario.

it; (ii) the condition which is checked before taking it; and (iii)
the action performed when it is taken. A total ordering on the
transitions is used to ensure determinism.

Furthermore, one may have properties which must hold for
every user in a bank, or possibly properties which should hold
for each account owned by each user. Consider the monitoring
of a simplified banking system, in which we would want to
monitor that at any time there should never be more than five
users in the bank and that a deletion does not occur when
there are no users (see Fig. 2).

To apply the above logic for each user and limit each
user’s number of accounts, one would simply need to replace
GLOBAL with FOREACH in the first line of the code shown
in Fig. 2, and apply the logic to accounts instead of users as
follows:

FOREACH (User u) {
...
PROPERTY accts {
...
TRANSITIONS {

start -> ok [addAcct()\\userAcct++;]
...
ok -> ok [delAcct()\\userAcct--;]

}

(3) allUsers (3) deleteUser

\userCnt==1

\userCnt--;

(2) deleteUser

ok

too many

(2) addUser\\userCnt++;

(4) deleteUser\\userCnt--;

(5) allUsers

(1) addUser

\userCnt>5

start

bad delete

(1) addUser

\\userCnt++;

\\userCnt=0;

GLOBAL {
VARIABLES {
int userCnt = 0;

}
EVENTS {
addUser() = {*.addUser()}
delUser() = {*.deleteUser()}
allUsers() = {User u.*()}

}
PROPERTY users {
STATES {

BAD { toomany baddel }
NORMAL { ok }
STARTING { start }

}
TRANSITIONS {

start -> ok [addUser()\\userCnt++;]
start -> baddel [delUser()\\]
...
ok -> ok [delUser()\\userCnt--;]
ok -> ok [allUsers()]

}
}

}

Fig. 2. The automaton and LARVA code of the simplified bank system.

}
}

A. Key Features of the Tool

LARVA provides three distinctive features: (1) its highly
expressive logic, (2) its ability to calculate time and memory
overheads, and (3) its guarantee on real-time properties. In
what follows we explain each one of these features thoroughly.

1) A highly expressive logic: LARVA can be used to monitor
all properties which can be written in DATEs. In other work we
have given an in-depth account of the expressivity of DATEs
and compared it to the expressivity of other similar tools [1]. In
this work, we choose to highlight only the two most important
aspects:

• The tool can monitor any property written in DATEs
which is at least as expressive as timed automata with
stopwatches — although when using the tool for hard
time constraints, one must keep in mind that in Java one
cannot guarantee exact timing of events (without going
for an underlying real-time virtual machine, which we
prefer to avoid).

• Properties can be verified for each tuple of objects.
Thus, a monitor is (dynamically) generated for every
tuple which is active in the system being verified. Each
instance of the monitor, which is an automaton, can
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also communicate via channels and global variables with
other similar automata and also with a global automaton,
making the logic very expressive.

2) Time and memory overhead estimation: LARVA can
provide a compiler that accepts Lustre code as input which can
be used for monitoring. Assuming that the LARVA compiler is
correct, no extra overheads are introduced over and above the
Lustre time and memory requirements. Thus, for the subset of
properties expressed in Lustre and translated into DATEs, the
tool can calculate an upper-bound of the resources required
for monitoring. This is a significant advantage in security-
critical systems. Admittedly, there is a limitation as to the
accuracy of the time required for the monitor execution im-
posed by the underlying operating system and the Java thread
scheduling system. However, in security-critical systems one
would assume that the operating system gives priority to the
system being executed and that the user opts for Java Real-
Time. If this is the case the accuracy limitation should not be a
problem. The full account of this work is soon to be submitted
for publication [5].

3) Composing features together: The tool also enables
specification of properties using Lustre and duration calculus
properties on Java code. By first translating the Lustre or the
duration calculus formulae into DATEs, the script with the
translated properties can be extended so as to be applied for
each instance of a particular object rather then just on the
global system.

III. OBSERVER-MATTERS PROPERTIES

The satisfaction of real-time properties are sensitive to
slowing down or speeding up of the underlying system. For
example, if a system is transferred to run on a faster machine,
some properties may be violated simply due to the system run-
ning faster e.g. no more than 1000 accesses to the databases
may occur every second. Similarly, other bugs may appear
when the system is slowed down e.g. an acknowledgement
must be sent no later than 0.1s after receiving a request.
In runtime verification, slowing down occurs when adding
a monitor, while speeding up may also occur if the runtime
monitors are removed at some stage.

A fragment of the duration calculus [6] called counterex-
ample traces [4] has been identified, for which, as long as
the events of the underlying system do not change their order
(but the intervals between them become longer or shorter) the
validity of the properties remains unchanged [7]. These checks
have been implemented in LARVA, thus providing guarantees
on real-time properties.

Through an analysis of the specification, LARVA tries to
deduce whether adding monitors to the system, thus slowing
it down, will have an effect on the validity of the specification.
The tool may deduce both truth and falsity preservation under
slowing down. For example, consider the property “no more
than three bad logins are allowed in ten minutes”. No matter
how much a system is slowed down by monitoring, there is no
possibility that such a property can be violated if it is satisfied
in the non-monitored version. In other circumstances, the

monitors might be removed from the system and we would like
to guarantee that the properties which were respected will re-
main true: truth preservation under time interval-compression.
Through a syntactic analysis of the property, LARVA can
provide such guarantees.

Furthermore, LARVA provides a translation from the in-
vestigated subset of the duration calculus into DATEs, which
preserves these guarantees.

As a case study of using the duration calculus for runtime
monitoring in a real-life scenario, we have used a network in-
trusion detection system. A number of properties are expressed
as duration formulae or counterexample traces, and used to
detect possible malicious activities on a network connection.
Each of these properties is stretch truth-preserving, i.e. if the
property holds on a system, it will also hold on a slowed-
down version of the system. This fact assures us that inserting
monitors in the system, will not cause a violation of any of the
monitored properties — no false negatives will occur. Typical
properties verified are:

1) Connection initiation It is desirable to disable any
incoming TCP packets which do not belong to con-
nections initiated by the host machine being moni-
tored. The initialisation of a TCP connection requires
a complete three-way handshake: first a synchroniza-
tion packet from the client, then a synchronization and
acknowledgement packet from the server and another
acknowledgement from the client. If the host machine
receives a synchronization packet without having sent
one beforehand, then an outsider is trying to open a
connection.

2) Redirection of messages
In the case of a machine with a routing table, a lot of
ICMP redirect messages can cause the system to slow
down. Therefore, if a number of ICMP redirect messages
are received in a relatively short time interval, this may
be considered as a threat to the system. The property,
which disallows three redirect messages with less than
two time units between subsequent messages.

3) Connection failure retries
A denial-of-service attack can be carried out by initiating
an excessive number of connection initialisations to a
server and then leaving the handshake incomplete. The
server will have to wait for each of these initialisations
to timeout. Sometimes these timeouts can cause serious
availability problems for the server because connection
requests can be issued at very high speeds. A simple
check would be to limit the number of subsequent failed
connection retries originating from the same IP address.

The duration formulae used are universally quantified over
state variables, exploiting the inherent parametrisation over
tuples of objects used in LARVA. In summary, given a property
as a counterexample trace, the following steps are required
to monitor a Java program to detect any violations of the
property: (i) use the tool to automatically convert the coun-
terexample trace into a LARVA script (at this point the tool
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examines the properties and outputs the guarantees which can
be given); (ii) relate the monitoring events to system events
(such as method calls); (iii) if the property is to be monitored
for each object of a particular class, modify the LARVA script
accordingly; (iv) add any Java code to be invoked in case of
a violation detection; (v) compile the script to generate the
monitoring system; and (vi) run the Java program with the
generated monitoring files in place.

Note that the properties in the intrusion detection system are
all slowdown truth preserving, i.e. slowing down the system
will not cause the properties to be violated. For example, con-
sider the fast succession of redirect messages: if the frequency
of redirect messages does not violate the above property, there
is no way by which the property can be violated by slowing
down the system. The other cases are similar.

IV. TOOL IMPLEMENTATION ISSUES

A. Monitor Management

• The internals of a monitor In practical terms, a monitor is
a class with a number of local variables and object refer-
ences. When monitoring individual objects, a monitor can
be thought of as a wrapper around the object (or tuple of
objects) being monitored. An indispensable method in a
monitor is the equals method which enables the system to
distinguish a monitor from another. A monitor class also
includes the monitoring logic generated from DATEs and
some utility functions for display.

• Creating monitors A global-level monitor is created as
soon as classes are being loaded by the system. On the
other hand, a lower-level monitor is created for an object
as soon as a relevant event of that object is detected.

• Maintaining hierarchy Due to the hierarchical nature of
nested automata, each monitor has a reference to its
parent, making all the parent’s variables available to the
child.

• Loading monitors Monitors are stored in a hash map
whose key is the monitor itself. This approach provides
fast retrieval of a monitor when an applicable event causes
an update. Note that the retrieval of a monitor highly
depends on the hashCode and equals methods of the
monitored object(s).

• Discarding monitors It is challenging to decide when a
monitor can be discarded. For example, an object which
has been serialised and discarded, might be later loaded
again and deserialised. Logically, the object is the same
one and it should be monitored by its existing monitor.
For this reason, it is up to the user to use accepting states
signalling that the automaton can be discarded once it
reaches an accepting state.

B. Real-Time Issues

• Single master clock Since using Java Real-Time is not
an option in our case, great care was taken to ensure the
best attainable accuracy. Using a thread for each clock
creates a chaos of non-determinism and possibly a great
number of threads which are a considerable overhead to

the system. Thus, the solution is to use a single thread
for a master clock. Each clock can register with the
master clock to be notified when a particular time period
elapses. This approach ensures that clock events are
always carried out in the correct order, i.e. ordering is not
affected by thread scheduling. The only remaining source
of non-determinism is the thread scheduling between the
master clock and the system’s threads. This problem is
lessened by giving the master clock thread a high priority.
Furthermore, the problem is almost completely avoided
if the transition triggered by the clock does not refer to
the system time and modifies only the monitor state but
not the system state.

• “Pausing” time For providing deterministic behaviour
with clocks, one would usually like to work under the
assumption that time is paused while the monitor is
taking a transition. This is provided to the user by
allowing access to the precise timestamp at which the
clock was triggered throughout the transition condition
and action.

• Thread issues Introducing a thread in a Java system for
the master clock might still be dangerous for the system.
The solution to this issue is to avoid modifying the sys-
tem’s state in actions triggered by clock events but simply
changing monitor values. Monitor values are guarded
with a lock such that only one thread can modify the
monitor state at any one time. This locking mechanism
also makes the tool usable with multi-threaded systems.

C. Inter-Monitor Communication

Although inter-monitor communication might sound com-
plex, it is in fact quite simple at an implementation level. A
channel is always global and upon the call of the send method,
it broadcasts the message to all the monitors using aspect
technology themselves, i.e. using the normal event-detecting
mechanism used for all system events.

V. CASE STUDY: FINANCIAL TRANSACTIONS

Apart from the network intrusion detection system, LARVA

has been applied to a real-life system — a financial system
for handling credit card transactions, monitoring a number of
interesting properties, including:

1) Conditions on events and system state After the
execution of certain crucial events the system should
guarantee certain security conditions. For example, upon
the logging of an event, we must ensure that no credit
card numbers are stored. In the case study, this was
achieved by detecting a logging event and analysing the
string being logged.

2) Object life cycles Usually, an entity in a system has
a number of states through which it can go during its
lifetime. In our financial system, transactions go through
a series of states which must be traversed in a particular
order and no state should be left out for a transaction to
be successfully completed.
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TABLE I
EXPRESSIVITY FEATURES OF VARIOUS TOOLS.

Tool LARVA ConSpec Java-MOP Java-MaC Hawk Lola

Scope Sess.a./Obj.b � Sess./Obj. Sess. Sess. Sess.
Exceptions � � × × × ×
Temporal Logics × × � × � �
Real-Time � × × �c �d ×
Mobile Application Policies × � × × × ×
Invariants � × � � × ×
Feedback � Stop.e � � × ×
Conditions � � � � × ×
Numerical Queries × × × × × �

aSess stands for a session scope (i.e. a run of the program).
bObj stands for an object scope (i.e. a monitor for each object).
cRestricted (cannot trigger clock events).
dCan be extended to support real-time.
eCan only cause the system to halt completely.

3) Invariants A number of attributes of an object should
persistently adhere to particular conditions. For example,
during the processing of a transaction a number of
details in the transaction object cannot be changed.
Consider the amount specified on a transaction: it is not
desirable that at any state during the communication with
the bank system, the transaction amount is doubled.

4) Counting the number of events Certain events are
bounded on their number of occurrences. The financial
system under investigation requires that failed transac-
tions are retried the correct number of times.

5) Real-time It is often the case that what is expected is
not only occurrence of a certain event, but when such an
event occurs or its duration. For example, a user should
be given a response within one minute of a given request.

For this case study, an early version of LARVA was used, and
helped identify extensions required to address challenges faced
when monitoring real-life systems.

VI. SIMILAR TOOLS

LARVA expressivity and performance was compared to a
number of other runtime verification tools including Conspec
[8], Java-MOP [9], Java-MAC [10], Hawk [11], and Lola [12].
To assess expressivity, we have looked at a number of relevant
classes of properties and showed how the tools compare. The
results are summarised in Table I. LARVA supports scoping,
exceptions, real-time, invariants, feedback and conditions both
on event parameters and on system state. However, we do not
have explicit support for temporal logics, numerical queries
(statistics), and mobile application policies. In the case of
resource consumption, we developed a benchmark with a
number of typical real-time properties and compared the
memory and temporal requirements. When compared to a
tool with the same level of expressivity — like Java-MOP
— LARVA performed well in terms of resources consumed.
The complete analysis can be found in [1].

VII. CONCLUSION

Motivated by the need of better expressivity and guaran-
teed monitoring of real-time properties, we have developed
LARVA. Using a number of translations, we offer the choice
to use an appropriate notation. For particular logics, we have
developed guarantees regarding the overheads and the impact
of monitoring on properties. The case studies and the outcome
of the comparison with other tools have shown LARVA to be
a promising tool. We believe that the tool and its surrounding
theory provide a better platform for the challenging monitoring
of real-time properties.
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