278 research outputs found

    The state of Texas vs the Methodist hospital system: An accounting case study: Working paper series--99-02

    Get PDF
    Pressures to contain costs have given private hospitals the economic incentive to reduce provision of charity care services, shifting the burden onto government hospitals. Budget pressures on governmental units have produced resistance to any further shift in charity care burden. We observe in a lawsuit (State of Texas vs. Methodist Hospital System [MHS]) what appears to be a classic moral hazard situation. The government expects a certain (unspecified) level of charity care to be performed in exchange for tax exemptions; hospital management allegedly consumes perquisites and overstates reported charity care figures. Both sides use accounting numbers to defend their positions. The Case makes five contributions. First, it is relevant and flexible enough for use in several different accounting or business courses, including financial, audit, tax, not-for-profit, or ethics courses. Second, it provides students an introduction to not-for-profit accounting placed in an interesting and relevant context. Third, students must employ forensic skills, much as did the state attorney general. Fourth, the Case requires students to make several audit-related determinations, including knowledge of a client's business, fraud, and related-party transactions. Finally, as students progress through the case, they are required to consider several ethical issues

    Virtual Assistive System for Robotic Single Incision Laparoscopic Surgery

    Get PDF
    Single Incision Laparoscopic Surgery (SILS) reduces the trauma of large wounds decreasing the post-operative infections, but introduces technical difficulties for the surgeon, who has to deal with at least three instruments in a single incision. These drawbacks can be overcome with the introduction of robotic arms inside the abdominal cavity, but still remain difficulties in the surgical field vision, limited by the endoscope field of view. This work is aimed at developing a system to improve the information required by the surgeon and enhance the vision during a robotic SILS. In the pre-operative phase, the segmentation and surface rendering of organs allow the surgeon to plan the surgery. During the intra-operative phase, the run-time information (tools and endoscope pose) and the pre-operative information (3D models of organs) are combined in a virtual environment. A point-based rigid registration of the virtual abdomen on the real patient creates a connection between reality and virtuality. The camera-image plane calibration allows to know at run-time the pose of the endoscopic view. The results show how using a small set of 4 points (the minimal number of points that would be used in a real procedure) for the camera-image plane calibration and for the registration between real and virtual model of the abdomen, is enough to provide a calibration/registration accuracy within the requirements

    Label-based Optimization of Dense Disparity Estimation for Robotic Single Incision Abdominal Surgery

    Get PDF
    Minimally invasive surgical techniques have led to novel approaches such as Single Incision Laparoscopic Surgery (SILS), which allows the reduction of post-operative infections and patient recovery time, improving surgical outcomes. However, the new techniques pose also new challenges to surgeons: during SILS, visualization of the surgical field is limited by the endoscope field of view, and the access to the target area is limited by the fact that instruments have to be inserted through a single port. In this context, intra-operative navigation and augmented reality based on pre-operative images have the potential to enhance SILS procedures by providing the information necessary to increase the intervention accuracy and safety. Problems arise when structures of interest change their pose or deform with respect to pre-operative planning, as usually happens in soft tissue abdominal surgery. This requires online estimation of the deformations to correct the pre-operative plan, which can be done, for example, through methods of depth estimation from stereo endoscopic images (3D reconstruction). The denser the reconstruction, the more accurate the deformation identification can be. This work presents an algorithm for 3D reconstruction of soft tissue, focusing on the refinement of the disparity map in order to obtain an accurate and dense point map. This algorithm is part of an assistive system for intra-operative guidance and safety supervision for robotic abdominal SILS . Results show that comparing our method with state-of-the-art CPU implementations, the percentage of valid pixel obtained with our method is 24% higher while providing comparable accuracy. Future research will focus on the development of a real-time implementation of the proposed algorithm, potentially based on a hybrid CPU-GPU processing framework

    DEVIL'S HERB

    Get PDF
    We describe a case of Mandragora autumnalis poisoning which occurred in a 72-year-old female patient who had eaten the venenous M. Autumnalis, picked near her home, mistaking it for the edible Borago Officinalis. M. Autumnalis is a solanaceous plant, common in the Sicilian countryside, which contains a variable concentration of solanum alkaloids, causing gastrointestinal irritation, and tropane alkaloids, with anticholinergic properties. Unluckily, M. Autumnalis is often mistaken for the edible B. Officinalis, likewise widespread in Sicilian countryside. The diagnosis of Mandragora poisoning was made on the basis of clinical symptoms and signs of anticholinergic syndrome associated with a history of vegetable meal of uncontrolled origin, moreover analysing the vegetable obtained from gastric lavage. Decontamination and symptomatic treatment were useful in our patient to control acute poisoning

    Prognosis of Single Early-Stage Hepatocellular Carcinoma (HCC) with CEUS Inconclusive Imaging (LI-RADS LR-3 and LR-4) Is No Better than Typical HCC (LR-5)

    Get PDF
    The American College of Radiology (ACR) released the Liver Imaging Report and Data System (LI-RADS) scheme, which categorizes hepatic nodules in risk classes from LR-1 to LR-5 (according to the degree of risk to be HCC) and LR-M (probable malignancy not specific for HCC). The aim of this study was to test whether HCC with different LR patterns on CEUS have different overall survival (OS) and recurrence-free survival (RFS). We retrospectively enrolled 167 patients with the first definitive diagnosis of single HCC (by using CT/MRI or histological techniques if CT/MRI were inconclusive) for whom CEUS examination was available. The median size of HCC lesions was 2.2 cm (range 1.0–7.2 cm). According to CEUS LI-RADS classification, 28 patients were in LR-3, 48 in LR-4, 83 in LR-5, and 8 in LR-M. Patient liver function and nodule characteristics were not statistically different between CEUS LI-RADS classes. Using univariate analysis, CEUS LI-RADS class was not found to be a predictor of survival (p = 0.347). In conclusion, HCC showing the CEUS LI-RADS classes LR-3 and LR-4 have no better clinical outcome than typical HCC. Such data support the EASL policy, aimed at conclusive diagnostic investigations of indeterminate nodules up to obtaining histological proof to avoid leaving aggressive HCC not timely treated

    LFR safety approach and main ELFR safety analysis results

    Get PDF
    This paper summarizes the approach to safety for the LFR systems, developed on the basis of the recommendations of the Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) and taking into account the fundamental safety objectives and the Defence-in-Depth approach, as described by IAEA Safety Guides, as well as the Safety quantitative objectives reported in the European Utilities Requirements (EUR). LEADER project activities are focused on the resolution of the key issues as they emerged from the 6th FP ELSY project attempting to reach a new industrial size European Lead-cooled Fast Reactor (ELFR) configuration. Apart from the safety approach, the main results of the ELFR safety transient analysis, where the most important design basis condition (DBC) and design extension condition (DEC) transient initiators were re-analyzed using the system codes RELAP5 (ENEA), TRACE-FRED (PSI), SIM-LFR (KIT) and SIMMER (CIRTEN), are summarized

    Borrelia Lyme Group

    Get PDF
    Borreliaceae is a family of the phylum Spirochaetales and includes two genera, Borrelia and Cristispira genus. Borrelia genus is divided into three groups, namely Lyme group (LG), Echidna‐Reptile group (REPG) and Relapsing Fever group (RFG). All Borrelia species have an obligate parasitic lifestyle, as they depend on their hosts for most of their nutritional needs. Borreliæ are transmitted among vertebrate hosts by arthropod vectors (ticks and lice). Transtadial transmission within their carriers occurs for the Borreliæ RF Group, while this does not (or rarely occurs) for the Borreliæ Lyme Group. Phylogenetic data demonstrated that these two groups are genetically similar but distinct, forming independent clades sharing a common ancestor. In nature, the vectors of LB belong to the genus Ixodes spp. frequently found in the Northern Hemisphere, while the vectors of RF are usually the soft-ticks (Ornithodoros spp.). Borreliae share a unique genomic structure consisting of a single highly conserved linear chromosome and several linear and circular extrachromosomal plasmids which can vary widely between strains. In addition to Lyme and RF borreliosis, an intermediate group, called Echidna-Reptile borreliosis, has recently been identified. Lyme disease (LD) is caused by the spirochæte Borrelia burgdorferi sensu lato (s.l.) and transmitted to humans by the bite of a hard tick of the genus Ixodes, and LD reservoir are usually small rodents. LD is present in America, Eurasia, Africa, while its presence in Australia is not yet well documented. Not all Borreliæ Lyme Groups cause this disease in humans. Of the 23 Borreliæ burgdorferi s.l. currently known only 9 have been identified in human infection, namely Borrelia burgdorferi sensu stricto, B. afzelii, B. bavarensis, B. bissettii, B. garinii, B. lusitaniae, B. spielmani, B. valaisiana, and B. mayonii. LD is an organotropic infection, but there is also a spirochætemic form, caused by Borrelia mayonii, which gives fever similarly to the Borreliosis RF Group. A third variant of LD is Baggio-Yoshinari Syndrome (BYS), which is transmitted by another hard tick, Amblyomma cajennense. This Borrelia has not been isolated in culture, therefore its membership in the Lyme Group is not yet proven. All three of these Sub-Groups can manifest early with erythema migrans. Clinical features of LD are wide and variable, with clinical manifestations linked to distinct tissue tropisms of specific Borrelia burgdorferi s.l. genospecies. The early infection is localized and, in the absence of treatment, the spirochete can spread. The organs most frequently involved are skin, joints, muscles, nervous system, heart and eyes. B. burgdorferi s.s. is more often associated with Lyme arthritis, Borrelia garinii with neuroborreliosis and B. afzelii with acrodermatitis chronica atrophicans

    Long Term Safety Area Tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery.

    Get PDF
    Despite the benefits introduced by robotic systems in abdominal Minimally Invasive Surgery (MIS), major complications can still affect the outcome of the procedure, such as intra-operative bleeding. One of the causes is attributed to accidental damages to arteries or veins by the surgical tools, and some of the possible risk factors are related to the lack of sub-surface visibilty. Assistive tools guiding the surgical gestures to prevent these kind of injuries would represent a relevant step towards safer clinical procedures. However, it is still challenging to develop computer vision systems able to fulfill the main requirements: (i) long term robustness, (ii) adaptation to environment/object variation and (iii) real time processing. The purpose of this paper is to develop computer vision algorithms to robustly track soft tissue areas (Safety Area, SA), defined intra-operatively by the surgeon based on the real-time endoscopic images, or registered from a pre-operative surgical plan. We propose a framework to combine an optical flow algorithm with a tracking-by-detection approach in order to be robust against failures caused by: (i) partial occlusion, (ii) total occlusion, (iii) SA out of the field of view, (iv) deformation, (v) illumination changes, (vi) abrupt camera motion, (vii), blur and (viii) smoke. A Bayesian inference-based approach is used to detect the failure of the tracker, based on online context information. A Model Update Strategy (MUpS) is also proposed to improve the SA re-detection after failures, taking into account the changes of appearance of the SA model due to contact with instruments or image noise. The performance of the algorithm was assessed on two datasets, representing ex-vivo organs and in-vivo surgical scenarios. Results show that the proposed framework, enhanced with MUpS, is capable of maintain high tracking performance for extended periods of time ( ≃ 4 min - containing the aforementioned events) with high precision (0.7) and recall (0.8) values, and with a recovery time after a failure between 1 and 8 frames in the worst case
    corecore