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INTRODUCTION 

Minimally invasive surgical techniques have led to 

novel approaches such as Single Incision Laparoscopic 

Surgery (SILS), which allows the reduction of post-

operative infections and patient recovery time, 

improving surgical outcomes. However, the new 

techniques pose also new challenges to surgeons: during 

SILS, visualization of the surgical field is limited by the 

endoscope field of view, and the access to the target 

area is limited by the fact that instruments have to be 

inserted through a single port.  

In this context, intra-operative navigation and 

augmented reality based on pre-operative images have 

the potential to enhance SILS procedures by providing 

the information necessary to increase the intervention 

accuracy and safety [1]. Problems arise when structures 

of interest change their pose or deform with respect to 

pre-operative planning, as usually happens in soft tissue 

abdominal surgery. This requires online estimation of 

the deformations to correct the pre-operative plan, 

which can be done, for example, through methods of 

depth estimation from stereo endoscopic images (3D 

reconstruction). The denser the reconstruction, the more 

accurate the deformation identification can be.  

This work presents an algorithm for 3D reconstruction 

of soft tissue, focusing on the refinement of the disparity 

map in order to obtain an accurate and dense point map. 

This algorithm is part of an assistive system for intra-

operative guidance and safety supervision for robotic 

abdominal SILS [2]. 

MATERIALS AND METHODS 

3D shape reconstruction using stereo-images is a 

process composed of two main steps: the disparity 

estimation and the stereo-triangulation. Using the left 

and right images ( 𝑖𝑚𝑙 , 𝑖𝑚𝑟 ) captured by a stereo 

camera, the disparity is estimated searching 

corresponding points between images. These are the 

projection of the same world point into two image 

planes. The relative distance between the corresponding 

pixels is described by the disparity map. Stereo-

triangulation consists in exploiting the detected 

correspondence and the geometry of the cameras to 

extract the 3D measurement of the observed scene [3].  

In this section, the steps of an improved algorithm for 

surface reconstruction are described (Fig. 1).  

 

Disparity Estimation 
Images are rectified in order to simplify the stereo-

correspondence analysis. An intensity pixel-based 

algorithm is used for local similarity searching. A sparse 

modified census transform [4] is applied to 𝑖𝑚𝑙   and 

𝑖𝑚𝑟  before matching. This method is robust against 

non-stationary exposure and illumination variations. It 

converts each pixel inside a moving window (𝑛𝑥𝑛) into 

a bit vector, representing which neighbor pixels have an 

intensity above or below the central pixel and the mean 

of the pixels inside the window.  

The similarity between the two census transformed 

images is done using the sum of Hamming Distance 

(HD) measure applied on a moving window. HD 

compares bit strings representing the pixels and 

identifies the number of positions at which the 

corresponding bits are different. These values are 

summed within a window (𝑚𝑥𝑚) and a “winner-takes-

all” strategy is used to find the minimum, and thus the 

disparity associated to the best similarity. The HD is 

computed only for a chessboard pattern of pixels inside 

the window in order to decrease the computational time.  

Since using only pixel precision the reconstructed 

surface would consist of separated layers, a sub pixel 

refinement is applied using a parabola fitting. To 

invalidate wrong pixels on texture-less surfaces, the 

disparity is defined invalid if the two minimum values 

of HD are within a threshold. Additionally, a Left-Right 

Consistency (LRC) check is performed to invalidate 

half-occluded pixels, i.e. object views in one image and 

not in the other. A speckle removal filter is also applied 

in order to invalidate regions of large and small 

disparities that can be generated near the boundaries of 

the objects. 

Dense Disparity Optimization  
The pixels of the disparity map defined invalid lead to 

holes in the point cloud, compromising the usefulness of 

the reconstructed surface. Here, we exploit the 

segmentation of the reference image 𝑖𝑚𝑙 to optimize the 

disparity map (Alg. 1). In literature, these techniques 

segment the images and then label each region with a 

disparity value, preserving the boundaries of the objects. 

However, finding gradually changing disparities can be 

a problem since all pixels in a region have the same 

disparity. Moreover, segmentation algorithms are 

computationally expensive.  
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To overcome these drawbacks, 𝑖𝑚𝑙 is segmented using 

a Simple Linear Iterative Clustering (SLIC) super pixel 

algorithm [5]. Each super-pixel is an homogeneous area 

with similar or at least continuous depth. A label L is 

assigned to each super-pixel, being 𝑖𝑚𝑙(𝐿) a group of 

pixels with the same label, i.e. belonging to the same 

super-pixel. Only the invalid values of disparity map are 

corrected using the information of the pixels belonging 

to the same label. Depending on the valid values inside 

a label, we apply two different strategies: 

 Plane fitting: if the found plane can be considered a 

reliable plane, the invalid disparity values are fitted 

to that plane. The plane parameters are estimated 

using the Locally Optimized RANSAC method. 

 Constant fitting: otherwise, the invalid disparity 

values are replaced by the median of the valid ones.   

After the stereo-triangulation step, a Moving Least 

Square algorithm is applied in order to smooth the point 

cloud,  using PCL library.  

 

Fig. 1 Main steps of the presented algorithm. From left to 

right: RGB image, census transformed image, disparity map, 

dense refined disparity map. 

RESULTS 

The point clouds obtained are validated using 10 frames 

from a video dataset (heart 1) available online from the 

Hamlyn Centre [6], the closest available datasets to the 

application of this work. The error is defined as the 

median of Euclidean distances between the point cloud 

and the ground truth. We calculated this error for 

different window sizes of census transform and 

Hamming Distance to show the correlation between the 

accuracy and the computational time, as shown in Fig. 

2. We considered also the percentage of valid points to 

evaluate the density of the point cloud (Fig. 2 – black 

line). Results show how the smoothing improves the 

accuracy of the reconstruction, giving a median error 

between 1.50𝑚𝑚 and 2.27𝑚𝑚 in the worst case.  

 

 
Fig. 2 Error before (green line) and after (blue line) the 

smoothing, and the pre-smoothing computational time (red 

line) with the corresponding interquartile range. CnHm 

represents the dimension of a squared window used in census 

transform (C) and in HD (H), ordered increasingly with time.  

DISCUSSION 

The presented work provides a dense surface 

reconstruction to be used in an enhanced vision system 

for robotic abdominal SILS. The strength of this method 

is the usage of SLIC Super Pixel algorithm for obtaining 

a high density valid disparity map (over the 90% of the 

total number of points), which can be exploited for 

augmented reality applications. Comparing our method 

with state-of-the-art CPU implementations [7] evaluated 

on heart 1, the percentage of valid points obtained with 

our method is 40% higher while providing a slightly 

lower accuracy (mean error 2.38 𝑚𝑚). Future research 

will focus on the development of a real-time 

implementation of the proposed algorithm, potentially 

based on a hybrid CPU-GPU processing framework.  
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Algorithm 1 Label-based Disparity Optimization  

Require:  D disparity map  

𝐿𝑖  labeling of 𝑖𝑚𝑙 segmented with SLIC Superpixel  

M  mask of invalid disparity values  

τ  threshold of number of valid points 

 
1: associate 𝐿𝑖 to D  →  𝐷𝐿𝑖 

 for each 𝐷𝐿𝑖 𝑖 ∊ {1, . . 𝑛𝑆𝑢𝑝𝑒𝑟𝑃𝑖𝑥𝑒𝑙} 
3:    compute plane parameters p with LO-RANSAC of     

4:    𝐷𝐿𝑖(𝑖, 𝑗) with 𝑖 = 𝑛𝑐𝑜𝑙𝑠 , 𝑗 = 𝑛𝑟𝑜𝑤𝑠 
5:    compute median m of  𝐷𝐿𝑖(𝑖, 𝑗) 
    end for 

    for each 𝑖 and 𝑗 of D  
        if 𝑀(𝑖, 𝑗) = 𝑡𝑟𝑢𝑒     

            if (𝑛𝑉𝑎𝑙𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑠 ∊ 𝐷𝐿𝑖) > τ  

6:               replace 𝐷(𝑖, 𝑗) with m (𝐷𝐿𝑖) 
            else 

7:               replace 𝐷(𝑖, 𝑗) with a point on 𝑝(𝐷𝐿𝑖) 

            end if 

        end if    

    end for 

return disparity map 𝐷𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
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