1,298 research outputs found

    High Field determination of superconducting fluctuations in high-Tc cuprates

    Full text link
    Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x single crystals. The fluctuation conductivity is found to vanish nearly exponentially with temperature, allowing us to determine precisely the field H'c(T) and the temperature T'c above which the SCFs are fully suppressed. T'c is always found much smaller than the pseudogap temperature. A careful investigation near optimal doping shows that T'c is higher than the pseudogap T*, which indicates that the pseudogap cannot be assigned to preformed pairs. For nearly optimally doped samples, the fluctuation conductivity can be accounted for by gaussian fluctuations following the Ginzburg-Landau scheme. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be quite similar to H'c(0) and to increase with hole doping. Studies of the incidence of disorder on both T'c and T* enable us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.Comment: 10 pages, 10 figures, invited paper at the M2SHTSC Conference Washington (2012

    Superconducting Fluctuations, Pseudogap and Phase Diagram in Cuprates

    Full text link
    We report transport measurements using pulsed magnetic fields to suppress the superconducting fluctuations (SCF) conductivity in a series of YBa_2Cu_3O_(6+x) samples. These experiments allow us altogether to measure the temperature T'c at which SCF disappear, and the pseudogap temperature T*. While the latter are consistent with previous determinations of T*, we find that T'c is slightly larger than similar data taken by Nernst measurements. A careful investigation near optimal doping shows that T* becomes smaller than T'c, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Studies of the incidence of disorder on both T'c and T* allow us to propose a phase diagram including disorder which explains most observations done in other cuprate families, and to discuss the available knowledge on the pseudogap line in the phase diagram.Comment: New version with minor correction

    Total suppression of superconductivity by high magnetic fields in YBa2 Cu3O6.6

    Full text link
    We have studied in fields up to 60T the variation of the transverse magnetoresistance (MR) of underdoped YBCO6.6 crystals either pure or with Tc reduced down to 3.5K by electron irradiation. We evidence that the normal state MR is restored above a threshold field H'c(T), which is found to vanish at T'c>>Tc. In the pure YBCO6.6 sample a 50 Tesla field is already required to completely suppress the superconducting fluctuations at Tc. While disorder does not depress the pseudogap temperature, it reduces drastically the phase coherence established at Tc and weakly H'c(0), T'c and the onset Tnu of the Nernst signal which are more characteristic of the 2D local pairing.Comment: 4 pages, 4 figure

    Nernst effect and disorder in the normal state of high-T_{c} cuprates

    Full text link
    We have studied the influence of disorder induced by electron irradiation on the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals. The fluctuation regime above T_{c} expands significantly with disorder, indicating that the T_{c} decrease is partly due to the induced loss of phase coherence. In pure crystals the temperature extension of the Nernst signal is found to be narrow whatever the hole doping, contrary to data reported in the low-T_{c} cuprates families. Our results show that the presence of "intrinsic" disorder can explain the enhanced range of Nernst signal found in the pseudogap phase of the latter compounds.Comment: revised version. to be published in Physical Review Letter

    Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere

    Full text link
    High-resolution spectra of Pluto in the 1.66 um region, recorded with the VLT/CRIRES instrument in 2008 (2 spectra) and 2012 (5 spectra), are analyzed to constrain the spatial and vertical distribution of methane in Pluto's atmosphere and to search for mid-term (4 year) variability. A sensitivity study to model assumptions (temperature structure, surface pressure, Pluto's radius) is performed. Results indicate that (i) no variation of the CH4 atmospheric content (column-density or mixing ratio) with Pluto rotational phase is present in excess of 20 % (ii) CH4 column densities show at most marginal variations between 2008 and 2012, with a best guess estimate of a ~20 % decrease over this time frame. As stellar occultations indicate that Pluto's surface pressure has continued to increase over this period, this implies a concomitant decrease of the methane mixing ratio (iii) the data do not show evidence for an altitude-varying methane distribution; in particular, they imply a roughly uniform mixing ratio in at least the first 22-27 km of the atmosphere, and high concentrations of low-temperature methane near the surface can be ruled out. Our results are also best consistent with a relatively large (> 1180 km) Pluto radius. Comparison with predictions from a recently developed global climate model GCM indicates that these features are best explained if the source of methane occurs in regional-scale CH4 ice deposits, including both low latitudes and high Northern latitudes, evidence for which is present from the rotational and secular evolution of the near-IR features due to CH4 ice. Our "best guess" predictions for the New Horizons encounter in 2015 are: a 1184 km radius, a 17 ubar surface pressure, and a 0.44 % CH4 mixing ratio with negligible longitudinal variations.Comment: 21 pages, 6 figure

    Inkjet-printed vertically emitting solid-state organic lasers

    Full text link
    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically-emitting thin-film organic lasers, and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 uJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several um thicknesses are realized thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm-1 at 550-680 nm. Standard laser dyes like Pyromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size " printed pixels " of 50 mm 2 present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50um x 50um AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost and can be used as fully disposable items. This works opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated
    corecore