366 research outputs found

    Electric-field induced capillary interaction of charged particles at a polar interface

    Full text link
    We study the electric-field induced capillary interaction of charged particles at a polar interface. The algebraic tails of the electrostatic pressure of each charge results in a deformation of the interface uρ4u\sim \rho ^{-4}. The resulting capillary interaction is repulsive and varies as ρ6\rho ^{-6} with the particle distance. As a consequence, electric-field induced capillary forces cannot be at the origin of the secondary minimum observed recently for charged PMMA particles at on oil-water interface.Comment: June 200

    The nature of the short wavelength excitations in vitreous silica: X-Rays Brillouin scattering study

    Full text link
    The dynamical structure factor (S(Q,E)) of vitreous silica has been measured by Inelastic X-ray Scattering varying the exchanged wavevector (Q) at fixed exchanged energy (E) - an experimental procedure that, contrary to the usual one at constant Q, provides spectra with much better identified inelastic features. This allows the first direct evidence of Brillouin peaks in the S(Q,E) of SiO_2 at energies above the Boson Peak (BP) energy, a finding that excludes the possibility that the BP marks the transition from propagating to localised dynamics in glasses.Comment: 4 pages, 3 Postscript figures. To appear in Physical Review Letter

    High frequency sound waves in vitreous silica

    Full text link
    We report a molecular dynamics simulation study of the sound waves in vitreous silica in the mesoscopic exchanged momentum range. The calculated dynamical structure factors are in quantitative agreement with recent experimental inelastic neutron and x-ray scattering data. The analysis of the longitudinal and transverse current spectra allows to discriminate between opposite interpretations of the existing experimental data in favour of the propagating nature of the high frequency sound waves.Comment: 4 pages, Revtex, 4 ps figures; to be published in Phys. Rev. Lett., February 198

    Elastic constant dishomogeneity and Q2Q^2 dependence of the broadening of the dynamical structure factor in disordered systems

    Full text link
    We propose an explanation for the quadratic dependence on the momentum QQ, of the broadening of the acoustic excitation peak recently found in the study of the dynamic structure factor of many real and simulated glasses. We ascribe the observed Q2Q^2 law to the spatial fluctuations of the local wavelength of the collective vibrational modes, in turn produced by the dishomegeneity of the inter-particle elastic constants. This explanation is analitically shown to hold for 1-dimensional disordered chains and satisfatorily numerically tested in both 1 and 3 dimensions.Comment: 4 pages, RevTeX, 5 postscript figure

    Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon

    Get PDF
    The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si) and paracrystalline silicon (p-Si), containing small crystalline grains embedded in a disordered matrix, are calculated using realistic structural models. The models are 1000-atom four-coordinated networks relaxed to a local minimum of the Stillinger-Weber interatomic potential. The vibrational decay rates are calculated numerically by perturbation theory, taking into account cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are found to be on picosecond time scales, in agreement with the previous perturbative and classical molecular dynamics calculations on a 216-atom model. The calculated decay rates for p-Si are similar to those of a-Si. No modes in p-Si reside entirely on the crystalline cluster, decoupled from the amorphous matrix. The localized modes with the largest (up to 59%) weight on the cluster decay primarily to two diffusons. The numerical results are discussed in relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62}, 8072 (2000)] that long vibrational relaxation inferred experimentally may be due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure

    Effective interactions of colloids on nematic films

    Get PDF
    The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations dd. The elastic interaction is repulsive and of quadrupolar type, varying as d5d^{-5}. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d5d^{-5} as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.Comment: 13 pages, accepted by EPJ

    Unconventional ferromagnetic and spin-glass states of the reentrant spin glass Fe0.7Al0.3

    Full text link
    Spin excitations of single crystal Fe0.7Al0.3 were investigated over a wide range in energy and reciprocal space with inelastic neutron scattering. In the ferromagnetic phase, propagating spin wave modes become paramagnon-like diffusive modes beyond a critical wave vector q0, indicating substantial disorder in the long-range ordered state. In the spin glass phase, spin dynamics is strongly q-dependent, suggesting remnant short-range spin correlations. Quantitative model for S(energy,q) in the ``ferromagnetic'' phase is determined.Comment: 4 pages, 5 figure
    corecore