971 research outputs found
Automatic alignment of surgical videos using kinematic data
Over the past one hundred years, the classic teaching methodology of "see
one, do one, teach one" has governed the surgical education systems worldwide.
With the advent of Operation Room 2.0, recording video, kinematic and many
other types of data during the surgery became an easy task, thus allowing
artificial intelligence systems to be deployed and used in surgical and medical
practice. Recently, surgical videos has been shown to provide a structure for
peer coaching enabling novice trainees to learn from experienced surgeons by
replaying those videos. However, the high inter-operator variability in
surgical gesture duration and execution renders learning from comparing novice
to expert surgical videos a very difficult task. In this paper, we propose a
novel technique to align multiple videos based on the alignment of their
corresponding kinematic multivariate time series data. By leveraging the
Dynamic Time Warping measure, our algorithm synchronizes a set of videos in
order to show the same gesture being performed at different speed. We believe
that the proposed approach is a valuable addition to the existing learning
tools for surgery.Comment: Accepted at AIME 201
Iterated Moire Maps and Braiding of Chiral Polymer Crystals
In the hexagonal columnar phase of chiral polymers a bias towards cholesteric
twist competes with braiding along an average direction. When the chirality is
strong, screw dislocations proliferate, leading to either a tilt grain boundary
phase or a new "moire state" with twisted bond order. Polymer trajectories in
the plane perpendicular to their average direction are described by iterated
moire maps of remarkable complexity.Comment: 10 pages (plain tex) 3 figures uufiled and appende
Dic(9;20)(p13;q11) in childhood acute lymphoblastic leukaemia is related to low cellular resistance to asparaginase, cytarabine and corticosteroids.
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldDic(9;20)(p13;q11) was first described as a nonrandom chromosome abnormality in B-cell precursor acute lymphoblastic leukaemia (BCP ALL) in the mid 1990s,1, 2 and 71 dic(9;20)-positive cases have since then been reported.3, 4, 5 Approximately 90% of these cases were children or adolescents, with dic(9;20) occurring in about 2% of childhood BCP ALL.6 The recent review by Forestier et al.5 describes that dic(9;20)-leukaemias are of B-cell precursor immunophenotype, never have a high hyperdiploid modal number, show a female predominance, and have a significant age incidence peak at 3 years. Most patients are allocated to non-standard risk treatment arms due to high WBC (median 24 109/l) and a relatively high frequency of CNS disease or other extra-medullary leukaemia (EML) at diagnosis. The prognostic implications of dic(9;20) are to a large extent unknown. A relatively large proportion of the relapses reported in the literature have been extra-medullary, and post-relapse treatment including block therapy has been successful in several patients, as illustrated by a p-EFS of 0.62 and a predicted overall survival of 0.82 at 5 years for the 24 Nordic cases.
Molecular Biomarkers of Neovascular Age-Related Macular Degeneration With Incomplete Response to Anti-Vascular Endothelial Growth Factor Treatment.
The standard treatment for neovascular age-related macular degeneration (nAMD) consists of intravitreal anti-vascular endothelial growth factors (VEGF). However, for some patients, even maximal anti-VEGF treatment does not entirely suppress exudative activity. The goal of this study was to identify molecular biomarkers in nAMD with incomplete response to anti-VEGF treatment. Aqueous humor (AH) samples were collected from three groups of patients: 17 patients with nAMD responding incompletely to anti-VEGF (18 eyes), 17 patients affected by nAMD with normal treatment response (21 eyes), and 16 control patients without any retinopathy (16 eyes). Proteomic and multiplex analyses were performed on these samples. Proteomic analyses showed that nAMD patients with incomplete anti-VEGF response displayed an increased inflammatory response, complement activation, cytolysis, protein-lipid complex, and vasculature development pathways. Multiplex analyses revealed a significant increase of soluble vascular cell adhesion molecule-1 (sVCAM-1) [ p = 0.001], interleukin-6 (IL-6) [ p = 0.009], bioactive interleukin-12 (IL-12p40) [ p = 0.03], plasminogen activator inhibitor type 1 (PAI-1) [ p = 0.004], and hepatocyte growth factor (HGF) [ p = 0.004] levels in incomplete responders in comparison to normal responders. Interestingly, the same biomarkers showed a high intercorrelation with r2 values between 0.58 and 0.94. In addition, we confirmed by AlphaLISA the increase of sVCAM-1 [ p < 0.0001] and IL-6 [ p = 0.043] in the incomplete responder group. Incomplete responders in nAMD are associated with activated angiogenic and inflammatory pathways. The residual exudative activity of nAMD despite maximal anti-VEGF treatment may be related to both angiogenic and inflammatory responses requiring specific adjuvant therapy. Data are available via ProteomeXchange with identifier PXD02247
In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium
Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches. Several studies provided conclusive evidence that a delicate balance between mammary epithelial cell proliferation and apoptosis regulates homeostasis in the healthy breast tissue 1-7. After menarche, and in the absence of pregnancy, the adult female mammary gland is subjected to cyclic fluctuations depending on hormonal stimulation 1,8. In response to such systemic hormonal changes, the breast epithelium undergoes a tightly regulated sequence of cell proliferation and apoptosis during each ovarian/menstrual cycle 1-3. The peak of epithelial cell proliferation has been reported to occur during the luteal phase, suggesting a synergistic influence of steroid hormones, such as estrogen and progesterone 2-5. In turn, the peak of apoptotic activity would be expected in response to decreasing hormone levels towards the end of the menstrual cycle 2-5. However, recent histologic findings indicate that apoptosis reaches its maximum levels in the middle of the luteal phase, although there is also a peak at about the third day of the menstrual cycle 6,7. Experimental measurements of cell turnover, i.e. programmed cell death and proliferation, demonstrated that an imbalance between the mitotic and apoptotic activity might lead to malignant transformation of epithelial cells and tumorigenic processes 9-11. Indeed, excessive cell proliferation promotes accumulation of DNA damage due to insufficient timely repair and mutations 12,13. There is also recent evidence that hormones suppress effective DNA repair and alter DNA damage response (DDR) 13-15
'Choosing shoes': a preliminary study into the challenges facing clinicians in assessing footwear for rheumatoid patients
Background: Footwear has been accepted as a therapeutic intervention for the foot affected
by rheumatoid arthritis (RA). Evidence relating to the objective assessment of footwear in
patients with RA is limited. The aims of this study were to identify current footwear styles,
footwear characteristics, and factors that influence footwear choice experienced by patients
with RA.
Methods: Eighty patients with RA were recruited from rheumatology clinics during the
summer months. Clinical characteristics, global function, and foot impairment and disability
measures were recorded. Current footwear, footwear characteristics and the factors
associated with choice of footwear were identified. Suitability of footwear was recorded using
pre-determined criteria for assessing footwear type, based on a previous study of foot pain.
Results: The patients had longstanding RA with moderate-to severe disability and
impairment. The foot and ankle assessment demonstrated a low-arch profile with both
forefoot and rearfoot structural deformities. Over 50% of shoes worn by patients were opentype
footwear. More than 70% of patients’ footwear was defined as being poor. Poor
footwear characteristics such as heel rigidity and sole hardness were observed. Patients
reported comfort (17%) and fit (14%) as important factors in choosing their own footwear.
Only five percent (5%) of patients wore therapeutic footwear.
Conclusions: The majority of patients with RA wear footwear that has been previously
described as poor. Future work needs to aim to define and justify the specific features of
footwear that may be of benefit to foot health for people with RA
Multi-modality image simulation with the Virtual Imaging Platform: Illustration on cardiac echography and MRI
International audienceMedical image simulation is useful for biological modeling, image analysis, and designing new imaging devices but it is not widely available due to the complexity of simulators, the scarcity of object models, and the heaviness of the associated computations. This paper presents the Virtual Imaging Platform, an openly-accessible web platform for multi-modality image simulation. The integration of simulators and models is described and exemplified on simulated cardiac MRIs and ultrasonic images
- …