3,817 research outputs found

    Long range orbital error estimation for applications satellites

    Get PDF
    A method of optimum orbital averaging was employed to study the long range accuracy potential of polar orbiting applications satellites. This approach involved the determination of the boundary conditions of one set of differential equations of motion by adjusting the initial conditions in a least square sense with the use of data generated by another set of differential equations of motion

    Hyperresponsiveness in the human nasal airway: new targets for the treatment of allergic airway disease.

    Get PDF
    Allergic rhinitis is a condition which affects over 15% of the population in the United Kingdom. The pathological process involves two stages: nasal inflammation, and the development of nasal airway hyperresponsiveness (AHR) to allergen and a number of other stimuli. This results in the amplification of any subsequent allergic reaction, contributing to the chronic allergic state. A number of different hypotheses have been proposed to explain the underlying mechanism of AHR, including a role for eosinophil-derived proteins, free radicals and neuropeptides. While there may be a number of independent pathways which can result in AHR, evidence obtained from both animal models and in vivo experiments in humans indicate that some mediators may interact with one another, resulting in AHR. Further research into these interactions may open new avenues for the pharmacological treatment of chronic allergic rhinitis, and possibly other allergic airway diseases

    Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    Get PDF
    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon

    RIVERINE DISSOLVED ORGANIC MATTER DECOMPOSITION AND DYNAMICS

    Get PDF
    Aquatic and terrestrial ecosystems are intimately linked through the transfer of energy and materials. A common example of ecosystem linkage is the input of terrestrial dissolved organic matter (DOM) to rivers and streams. DOM can play a variety of roles in stream ecosystem function by fueling local food webs, influencing trophic state, and affecting the dissolved nutrient availability. Microorganisms utilize, transform, and produce DOM during microbial metabolism, a relationship that links microbes to DOM quality and quantity. Chemical and physical properties are known to vary with DOM source, and thus the type of terrestrial input may dictate how DOM is processed in a stream.  Using laboratory microcosms, and added terrestrial organic matter substrates, we carried out a leaching experiment over forty-five days. We employed a suite of complementary techniques to determine the effect of leaching DOM sources on microorganisms, DOM processing, and ecosystem function.  Microbial community composition changed from the original stream water inoculum and depended on DOM source. Cell abundances for all DOM sources spiked after two days, after which abundances dropped and remained relatively steady until the end of the experiment.  DOM concentrations decreased exponentially with the maximum amount of carbon utilization taking place within the first five days.  The DOM fluorescent signature, initially influenced by amino acid-like fluorescence shifts to more humic-like character over the course of the experiment, indicating DOM humification over time. Our results showcase the advantages of interdisciplinary tools to elucidate the connection of microbial processing, DOM chemistry, and ecosystem function

    Choosing a basis that eliminates spurious solutions in k.p theory

    Full text link
    A small change of basis in k.p theory yields a Kane-like Hamiltonian for the conduction and valence bands of narrow-gap semiconductors that has no spurious solutions, yet provides an accurate fit to all effective masses. The theory is shown to work in superlattices by direct comparison with first-principles density-functional calculations of the valence subband structure. A reinterpretation of the standard data-fitting procedures used in k.p theory is also proposed.Comment: 15 pages, 2 figures; v3: expanded with much new materia

    Coherent optical phase transfer over a 32-km fiber with 1-s instability at 10−1710^{-17}

    Full text link
    The phase coherence of an ultrastable optical frequency reference is fully maintained over actively stabilized fiber networks of lengths exceeding 30 km. For a 7-km link installed in an urban environment, the transfer instability is 6×10−186 \times 10^{-18} at 1-s. The excess phase noise of 0.15 rad, integrated from 8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link achieves similar performance. Using frequency combs at each end of the coherent-transfer fiber link, a heterodyne beat between two independent ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.Comment: 4 pages, 4 figure

    Orion Spacecraft MMOD Protection Design and Assessment

    Get PDF
    The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extended outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that the Constellation Program, Orion Crew Exploration Vehicle design will meet or exceed the stringent micrometeoroid and orbital debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements

    A Novel Microgrid Demand-Side Management System for Manufacturing Facilities

    Get PDF
    Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid and DSM program was enabled together, resulting in a total reduction of 37%. On average, peak demand was reduced by 6%, but due to the intermittency of the renewable source and the billing structure for peak demand, only a 1% reduction was obtained. During a billing period, it only takes one day when solar irradiance is poor to affect the demand reduction capabilities. To achieve further demand reduction, energy storage should be introduced and integrated

    Biaxial strength characteristics of selected alloys in a cryogenic environment Final engineering report, 6 Jan. 1965 - 6 May 1966

    Get PDF
    Uniaxial and biaxial strength characteristics and mechanical properties of metallic sheet materials at cryogenic temperature
    • …
    corecore