49 research outputs found

    Protection from Intracellular Oxidative Stress by Cytoglobin in Normal and Cancerous Oesophageal Cells

    Get PDF
    Cytoglobin is an intracellular globin of unknown function that is expressed mostly in cells of a myofibroblast lineage. Possible functions of cytoglobin include buffering of intracellular oxygen and detoxification of reactive oxygen species. Previous work in our laboratory has demonstrated that cytoglobin affords protection from oxidant-induced DNA damage when over expressed in vitro, but the importance of this in more physiologically relevant models of disease is unknown. Cytoglobin is a candidate for the tylosis with oesophageal cancer gene, and its expression is strongly down-regulated in non-cancerous oesophageal biopsies from patients with TOC compared with normal biopsies. Therefore, oesophageal cells provide an ideal experimental model to test our hypothesis that downregulation of cytoglobin expression sensitises cells to the damaging effects of reactive oxygen species, particularly oxidative DNA damage, and that this could potentially contribute to the TOC phenotype. In the current study, we tested this hypothesis by manipulating cytoglobin expression in both normal and oesophageal cancer cell lines, which have normal physiological and no expression of cytoglobin respectively. Our results show that, in agreement with previous findings, over expression of cytoglobin in cancer cell lines afforded protection from chemically-induced oxidative stress but this was only observed at non-physiological concentrations of cytoglobin. In addition, down regulation of cytoglobin in normal oesophageal cells had no effect on their sensitivity to oxidative stress as assessed by a number of end points. We therefore conclude that normal physiological concentrations of cytoglobin do not offer cytoprotection from reactive oxygen species, at least in the current experimental model

    Association between Ngb polymorphisms and ischemic stroke in the Southern Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neuroglobin </it>(<it>Ngb</it>), one of novel members of the globin superfamily, is expressed predominantly in brain neurons, and appears to modulate hypoxic-ischemic insults. The mechanisms underlying <it>Ngb</it>-mediated neuronal protection are still unclear. For it is one of the candidate protective factors for ischemic stroke, we conducted a case-control study to clarify the association of <it>Ngb </it>polymorphisms with ischemic stroke in the Southern Chinese Han population.</p> <p>Methods</p> <p>355 cases and 158 controls were recruited. With brain imaging, cases were subdivided into large-artery atherosclerosis (LVD) and small-vessel occlusion (SVD) stroke. PCR amplified all the four exons of <it>Ngb </it>and flanking intron sequence for each exon. Genotyping for <it>Ngb </it>was achieved by direct sequencing and mismatched PCR-RFLP. Polymorphisms were studied both individually and as haplotypes in each group and subgroup which subdivided according to gender or age.</p> <p>Results</p> <p>Two intronic polymorphisms 89+104 c>t and 322-110 (6a)>5a were identified. The allele frequency of 89+104 t was decreased in stroke cases. The protective effect seems to be more pronounced in subgroups of female patients and age > 60 years. Also, we have confirmed decreased LDL-C level and reduced hypertension and hypercholesterolemia in 89+104 t allele carriers. In contrast, the 322-110 (6a)>5a genotype distribution was similar between cases and controls. However, the haplotype 89+104 c>t/322-110 (6a)>5a was related with LVD and SVD stroke. The haplotype c-5a was more frequent in both LVD and SVD groups while t-6a was more frequent in controls.</p> <p>Conclusion</p> <p>Ngb polymorphism 89+104 t had protective effects on LVD and SVD in the Southern Chinese Han population. A "hitchhiking" effect was observed for the 89+104 t/322-110 (6a) genotype combination especially for LVD.</p

    Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer

    Get PDF
    Background: Cytoglobin (Cygb) was first described in 2002 as an intracellular globin of unknown function. We have previously shown the downregulation of cytoglobin as a key event in a familial cancer syndrome of the upper aerodigestive tract. Methods: Cytoglobin expression and promoter methylation were investigated in sporadic head and neck squamous cell carcinoma (HNSCC) using a cross-section of clinical samples. Additionally, the putative mechanisms of Cygb expression in cancer were explored by subjecting HNSCC cell lines to hypoxic culture conditions and 5-aza-2-deoxycitidine treatment. Results: In clinically derived HNSCC samples, CYGB mRNA expression showed a striking correlation with tumour hypoxia (measured by HIF1A mRNA expression P=0.013) and consistent associations with histopathological measures of tumour aggression. CYGB expression also showed a marked negative correlation with promoter methylation (P=0.018). In the HNSCC cell lines cultured under hypoxic conditions, a trend of increasing expression of both CYGB and HIF1A with progressive hypoxia was observed. Treatment with 5-aza-2-deoxycitidine dramatically increased CYGB expression in those cell lines with greater baseline promoter methylation. Conclusion: We conclude that the CYGB gene is regulated by both promoter methylation and tumour hypoxia in HNSCC and that increased expression of this gene correlates with clincopathological measures of a tumour's biological aggression.</p

    An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    Get PDF
    Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurological and radiological examinations. A genome wide search was conducted in this family using the ABI PRISM linkage mapping set version 2.5 from Applied Biosystems. Six candidate genes within the region linked to the disease were screened for mutations by direct sequencing. Results Evidence of linkage was obtained on chromosome 17q24.2-25.3. Analysis of recombination events and LOD score calculation suggests linkage of the responsible gene in a genetic interval of 11 Mb located between D17S789 and D17S1806 with a maximal multipoint LOD score of 2.90. Sequencing of seven candidate genes in this locus, ATP5H, FDXR, SLC25A19, MCT8, CYGB, KCNJ16 and GRIN2C, identified three missense mutations in the FDXR gene which were also found in a homozygous state in three healthy controls, suggesting that these variants are not disease-causing mutations in the family. Conclusion A novel locus for leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa has been mapped to chromosome 17q24.2-25.3 in a consanguineous Moroccan family

    Module M1 of Zebrafish Neuroglobin Acts as a Structural and Functional Protein Building Block for a Cell-Membrane-Penetrating Activity

    Get PDF
    Neuroglobin (Ngb) is a recently discovered vertebrate globin that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection during oxidative stress that occurs, for example, during ischemia and reperfusion. Recently, we found that zebrafish, but not human, Ngb can translocate into cells. Moreover, we demonstrated that a chimeric ZHHH Ngb protein, in which the module M1 of human Ngb is replaced by the corresponding region of zebrafish Ngb, can penetrate cell membranes and protect cells against oxidative stress-induced cell death, suggesting that module M1 of zebrafish Ngb is important for protein transduction. Furthermore, we recently showed that Lys7, Lys9, Lys21, and Lys23 in module M1 of zebrafish Ngb are crucial for protein transduction activity. In the present study, we have investigated whether module M1 of zebrafish Ngb can be used as a building block to create novel cell-membrane-penetrating folded proteins. First, we engineered a chimeric myoglobin (Mb), in which module M1 of zebrafish Ngb was fused to the N-terminus of full-length human Mb, and investigated its functional and structural properties. Our results showed that this chimeric Mb protein is stable and forms almost the same heme environment and α-helical structure as human wild-type Mb. In addition, we demonstrated that chimeric Mb has a cell-membrane-penetrating activity similar to zebrafish Ngb. Moreover, we found that glycosaminoglycan is crucial for the cell-membrane-penetrating activity of chimeric Mb as well as that of zebrafish Ngb. These results enable us to conclude that such module substitutions will facilitate the design and production of novel functional proteins
    corecore