19,537 research outputs found

    Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Get PDF
    Data from the Fabry-Perot Interferometers at KEOPS (Sweden), Sodankylä (Finland), and Svalbard (Norway), have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (5 h) detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data. This gives a clear indication of the direction of flow of the gravity waves, and corroborates that the source is the auroral oval. This is because the energy is dissipated through heating in each cycle of a wave, therefore, over a given distance, short period waves lose more energy than long and dissipate before they reach their target

    Responding to rape.

    Get PDF

    Passive Treatment Systems for Acid Mine Drainage

    Get PDF
    Passive Treatment Systems provide an alternative method for removing metals from acid mine drainage. There are several types of passive treatment systems; they may be used on their own or in combination to treat difficult effluents. The type of system selected is dependent upon the chemistry of the acid mine drainage and the flow of the discharge, as well as State and Federal regulations. Passive treatment systems do not require power and are less expensive than active treatment systems. They also require less maintenance, which makes them advantageous in remote locations

    Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light.

    Get PDF
    Water treatment systems frequently use strong oxidants or UV light to degrade chemicals that pose human health risks. Unfortunately, these treatments can result in the unintended transformation of organic contaminants into toxic products. We report an unexpected reaction through which exposure of phenolic compounds to hydroxyl radicals (•OH) or UV light results in the formation of toxic α,β-unsaturated enedials and oxoenals. We show that these transformation products damage proteins by reacting with lysine and cysteine moieties. We demonstrate that phenolic compounds react with •OH produced by the increasingly popular UV/hydrogen peroxide (H2O2) water treatment process or UV light to form toxic enedials and oxoenals. In addition to raising concerns about potential health risks of oxidative water treatment, our findings suggest the potential for formation of these toxic compounds in sunlit surface waters, atmospheric water, and living cells. For the latter, our findings may be particularly relevant to efforts to understand cellular damage caused by in vivo production of reactive oxygen species. In particular, we demonstrate that exposure of the amino acid tyrosine to •OH yields an electrophilic enedial product that undergoes cross-linking reaction with both lysine and cysteine residues

    Quantum Inequalities and Singular Energy Densities

    Full text link
    There has been much recent work on quantum inequalities to constrain negative energy. These are uncertainty principle-type restrictions on the magnitude and duration of negative energy densities or fluxes. We consider several examples of apparent failures of the quantum inequalities, which involve passage of an observer through regions where the negative energy density becomes singular. We argue that this type of situation requires one to formulate quantum inequalities using sampling functions with compact support. We discuss such inequalities, and argue that they remain valid even in the presence of singular energy densities.Comment: 18 pages, LaTex, 2 figures, uses eps

    Brownian Motion in Robertson-Walker Space-Times from electromagnetic Vacuum Fluctuations

    Full text link
    We consider classical particles coupled to the quantized electromagnetic field in the background of a spatially flat Robertson-Walker universe. We find that these particles typically undergo Brownian motion and acquire a non-zero mean squared velocity which depends upon the scale factor of the universe. This Brownian motion can be interpreted as due to non-cancellation of anti-correlated vacuum fluctuations in the time dependent background space-time. We consider several types of coupling to the electromagnetic field, including particles with net electric charge, a magnetic dipole moment, and electric polarizability. We also investigate several different model scale factors.Comment: 29 pages, 7 figure
    • …
    corecore