26,737 research outputs found

    Decoherence at zero temperature

    Get PDF
    Most discussions of decoherence in the literature consider the high-temperature regime but it is also known that, in the presence of dissipation, decoherence can occur even at zero temperature. Whereas most previous investigations all assumed initial decoupling of the quantum system and bath, we consider that the system and environment are entangled at all times. Here, we discuss decoherence for a free particle in an initial Schr\"{o}dinger cat state. Memory effects are incorporated by use of the single relaxation time model (since the oft-used Ohmic model does not give physically correct results)

    Maximum st-flow in directed planar graphs via shortest paths

    Full text link
    Minimum cuts have been closely related to shortest paths in planar graphs via planar duality - so long as the graphs are undirected. Even maximum flows are closely related to shortest paths for the same reason - so long as the source and the sink are on a common face. In this paper, we give a correspondence between maximum flows and shortest paths via duality in directed planar graphs with no constraints on the source and sink. We believe this a promising avenue for developing algorithms that are more practical than the current asymptotically best algorithms for maximum st-flow.Comment: 20 pages, 4 figures. Short version to be published in proceedings of IWOCA'1

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-

    Reply to Comment on "Completely positive quantum dissipation"

    Full text link
    This is the reply to a Comment by R. F. O'Connell (Phys. Rev. Lett. 87 (2001) 028901) on a paper written by the author (B. Vacchini, ``Completely positive quantum dissipation'', Phys.Rev.Lett. 84 (2000) 1374, arXiv:quant-ph/0002094).Comment: 2 pages, revtex, no figure

    A quantum violation of the second law?

    Get PDF
    An apparent violation of the second law of thermodynamics occurs when an atom coupled to a zero-temperature bath, being necessarily in an excited state, is used to extract work from the bath. Here the fallacy is that it takes work to couple the atom to the bath and this work must exceed that obtained from the atom. For the example of an oscillator coupled to a bath described by the single relaxation time model, the mean oscillator energy and the minimum work required to couple the oscillator to the bath are both calculated explicitly and in closed form. It is shown that the minimum work always exceeds the mean oscillator energy, so there is no violation of the second law

    Development of shape memory metal as the actuator of a fail safe mechanism

    Get PDF
    A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described

    Analysis of the wind tunnel test of a tilt rotor power force model

    Get PDF
    Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed

    Strichartz estimates for the Schr\"odinger equation on polygonal domains

    Full text link
    We prove Strichartz estimates with a loss of derivatives for the Schr\"odinger equation on polygonal domains with either Dirichlet or Neumann homogeneous boundary conditions. Using a standard doubling procedure, estimates the on polygon follow from those on Euclidean surfaces with conical singularities. We develop a Littlewood-Paley squarefunction estimate with respect to the spectrum of the Laplacian on these spaces. This allows us to reduce matters to proving estimates at each frequency scale. The problem can be localized in space provided the time intervals are sufficiently small. Strichartz estimates then follow from a result of the second author regarding the Schr\"odinger equation on the Euclidean cone.Comment: 12 page

    Wigner Distribution Function Approach to Dissipative Problems in Quantum Mechanics with emphasis on Decoherence and Measurement Theory

    Get PDF
    We first review the usefulness of the Wigner distribution functions (WDF), associated with Lindblad and pre-master equations, for analyzing a host of problems in Quantum Optics where dissipation plays a major role, an arena where weak coupling and long-time approximations are valid. However, we also show their limitations for the discussion of decoherence, which is generally a short-time phenomenon with decay rates typically much smaller than typical dissipative decay rates. We discuss two approaches to the problem both of which use a quantum Langevin equation (QLE) as a starting-point: (a) use of a reduced WDF but in the context of an exact master equation (b) use of a WDF for the complete system corresponding to entanglement at all times
    • 

    corecore