5,115 research outputs found

    Pectinate Antennae in the Geometridze (Lepidoptera)

    Get PDF

    Vibration effects on heat transfer in cryogenic systems Quarterly progress report no. 1, Jun. 1 - Aug. 31, 1966

    Get PDF
    Vibration effects on natural convection and fluid transport properties in cryogenic system

    Non-existence of Skyrmion-Skyrmion and Skyrmion-anti-Skyrmion static equilibria

    Full text link
    We consider classical static Skyrmion-anti-Skyrmion and Skyrmion-Skyrmion configurations, symmetric with respect to a reflection plane, or symmetric up to a GG-parity transformation respectively. We show that the stress tensor component completely normal to the reflection plane, and hence its integral over the plane, is negative definite or positive definite respectively. Classical Skyrmions always repel classical Skyrmions and classical Skyrmions always attract classical anti-Skyrmions and thus no static equilibrium, whether stable or unstable, is possible in either case. No other symmetry assumption is made and so our results also apply to multi-Skyrmion configurations. Our results are consistent with existing analyses of Skyrmion forces at large separation, and with numerical results on Skymion-anti-Skyrmion configurations in the literature which admit a different reflection symmetry. They also hold for the massive Skyrme model. We also point out that reflection symmetric self-gravitating Skyrmions or black holes with Skyrmion hair cannot rest in symmetric equilibrium with self-gravitating anti-Skyrmions.Comment: v2 Typos corrected, refs added. v3 Journal versio

    Structure of the low latitude boundary layer

    Get PDF
    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more

    Distinguishing Solar Flare Types by Differences in Reconnection Regions

    Get PDF
    Observations show that magnetic reconnection and its slow shocks occur in solar flares. The basic magnetic structures are similar for long duration event (LDE) flares and faster compact impulsive (CI) flares, but the former require less non-thermal electrons than the latter. Slow shocks can produce the required non-thermal electron spectrum for CI flares by Fermi acceleration if electrons are injected with large enough energies to resonate with scattering waves. The dissipation region may provide the injection electrons, so the overall number of non-thermal electrons reaching the footpoints would depend on the size of the dissipation region and its distance from the chromosphere. In this picture, the LDE flares have converging inflows toward a dissipation region that spans a smaller overall length fraction than for CI flares. Bright loop-top X-ray spots in some CI flares can be attributed to particle trapping at fast shocks in the downstream flow, the presence of which is determined by the angle of the inflow field and velocity to the slow shocks.Comment: 15 pages TeX and 2 .eps figures, accepted to Ap.J.Let

    WMAP Haze: Directly Observing Dark Matter?

    Full text link
    In this paper we show that dark matter in the form of dense matter/antimatter nuggets could provide a natural and unified explanation for several distinct bands of diffuse radiation from the core of the Galaxy spanning over 12 orders of magnitude in frequency. We fix all of the phenomenological properties of this model by matching to x-ray observations in the keV band, and then calculate the unambiguously predicted thermal emission in the microwave band, at frequencies smaller by 10 orders of magnitude. Remarkably, the intensity and spectrum of the emitted thermal radiation are consistent with--and could entirely explain--the so-called "WMAP haze": a diffuse microwave excess observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy Probe (WMAP). This provides another strong constraint of our proposal, and a remarkable nontrivial validation. If correct, our proposal identifies the nature of the dark matter, explains baryogenesis, and provides a means to directly probe the matter distribution in our Galaxy by analyzing several different types of diffuse emissions.Comment: 16 pages, REVTeX4. Updated to correspond with published version: includes additional appendices discussing finite-size effect

    Far-Infrared Emission From E and E/S0 Galaxies

    Get PDF
    Studies of cold material through IRAS 60um and 100um observations indicated that half of ordinary E and E/S0 galaxies were detected above the 3 sigma level, indicating that cold gas is common, although no correlation was found between the optical and far- infrared fluxes. Most detections were near the instrumental threshold, and given an improved understanding of detection confidence, we reconsider the 60um and 100um detection rate. After excluding active galactic nuclei, peculiar systems, and background contamination, only 15 non-peculiar E and E/S0 galaxies from the RSA catalog are detected above the 98% confidence level, about 12% of the sample. An unusually high percentage of these 15 galaxies possess cold gas (HI, CO) and optical emission lines (Halpha), supporting the presence of gas cooler than 10E4 K. The 60um to 100um flux ratios imply a median dust temperature for the sample of 30 K, with a range of 23-38 K. These detections define the upper envelope of the optical to far-infrared relationship, F_fir propto F_B^0.24+/-0.08, showing that optically bright objects are also brighter in the infrared, although with considerable dispersion. A luminosity correlation is present with L_fir propto L_B^1.65+/-0.28, but the dust temperature is uncorrelated with luminosity. Models that contain large dust grains composed of amorphous carbon plus silicates come close to reproducing the typical 60um to 100um flux ratios, the far-infrared luminosity, and the L_fir - L_B relationship.Comment: 10 postscript pages, 2 tables, and 2 figure

    Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Get PDF
    Comparisons are made between climatological dynamic fields obtained from ground-based (GB) and space-based (SB) instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI) instrument on the Upper Atmosphere Research Satellite (UARS). The GB data originate from meteor radars at Obninsk, (55° N, 37° E), Shigaraki (35° N, 136° E) and Jakarta (6° S, 107° E) and MF spaced-antenna radars at Hawaii (22° N, 160° W), Christmas I. (2° N, 158° W) and Adelaide (35° S, 138° E). We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB) analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data sources exists for semidiurnal tidal phases throughout the year. These results are consistent with phase retardation effects in the MF radar technique that are thought to exist above about 90km. Prevailing and tidal amplitudes from Shigaraki track year-to-year variations in SB fields, whereas in the Southern Hemisphere poorer agreement exists. The above hemispheric differences are due in part to MF vs. meteor radar techniques, but zonal asymmetries and day-to-day variability, combined with inadequate sampling, may also be playing a role. Based on these results, some obvious recommendations emerge that are relevant to combined GB/SB studies as part of TIMED and other future aeronomy missions.J. M. Forbes, Yu. I. Portnyagin, W. Skinner, R. A. Vincent, T. Solovjova, E. Merzlyakov, T. Nakamura, and S. Pal
    • …
    corecore