5,130 research outputs found
Vibration effects on heat transfer in cryogenic systems Quarterly progress report no. 1, Jun. 1 - Aug. 31, 1966
Vibration effects on natural convection and fluid transport properties in cryogenic system
Non-existence of Skyrmion-Skyrmion and Skyrmion-anti-Skyrmion static equilibria
We consider classical static Skyrmion-anti-Skyrmion and Skyrmion-Skyrmion
configurations, symmetric with respect to a reflection plane, or symmetric up
to a -parity transformation respectively. We show that the stress tensor
component completely normal to the reflection plane, and hence its integral
over the plane, is negative definite or positive definite respectively.
Classical Skyrmions always repel classical Skyrmions and classical Skyrmions
always attract classical anti-Skyrmions and thus no static equilibrium, whether
stable or unstable, is possible in either case. No other symmetry assumption is
made and so our results also apply to multi-Skyrmion configurations. Our
results are consistent with existing analyses of Skyrmion forces at large
separation, and with numerical results on Skymion-anti-Skyrmion configurations
in the literature which admit a different reflection symmetry. They also hold
for the massive Skyrme model. We also point out that reflection symmetric
self-gravitating Skyrmions or black holes with Skyrmion hair cannot rest in
symmetric equilibrium with self-gravitating anti-Skyrmions.Comment: v2 Typos corrected, refs added. v3 Journal versio
Structure of the low latitude boundary layer
Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more
Distinguishing Solar Flare Types by Differences in Reconnection Regions
Observations show that magnetic reconnection and its slow shocks occur in
solar flares. The basic magnetic structures are similar for long duration event
(LDE) flares and faster compact impulsive (CI) flares, but the former require
less non-thermal electrons than the latter. Slow shocks can produce the
required non-thermal electron spectrum for CI flares by Fermi acceleration if
electrons are injected with large enough energies to resonate with scattering
waves. The dissipation region may provide the injection electrons, so the
overall number of non-thermal electrons reaching the footpoints would depend on
the size of the dissipation region and its distance from the chromosphere. In
this picture, the LDE flares have converging inflows toward a dissipation
region that spans a smaller overall length fraction than for CI flares. Bright
loop-top X-ray spots in some CI flares can be attributed to particle trapping
at fast shocks in the downstream flow, the presence of which is determined by
the angle of the inflow field and velocity to the slow shocks.Comment: 15 pages TeX and 2 .eps figures, accepted to Ap.J.Let
WMAP Haze: Directly Observing Dark Matter?
In this paper we show that dark matter in the form of dense matter/antimatter
nuggets could provide a natural and unified explanation for several distinct
bands of diffuse radiation from the core of the Galaxy spanning over 12 orders
of magnitude in frequency. We fix all of the phenomenological properties of
this model by matching to x-ray observations in the keV band, and then
calculate the unambiguously predicted thermal emission in the microwave band,
at frequencies smaller by 10 orders of magnitude. Remarkably, the intensity and
spectrum of the emitted thermal radiation are consistent with--and could
entirely explain--the so-called "WMAP haze": a diffuse microwave excess
observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy
Probe (WMAP). This provides another strong constraint of our proposal, and a
remarkable nontrivial validation. If correct, our proposal identifies the
nature of the dark matter, explains baryogenesis, and provides a means to
directly probe the matter distribution in our Galaxy by analyzing several
different types of diffuse emissions.Comment: 16 pages, REVTeX4. Updated to correspond with published version:
includes additional appendices discussing finite-size effect
Far-Infrared Emission From E and E/S0 Galaxies
Studies of cold material through IRAS 60um and 100um observations indicated
that half of ordinary E and E/S0 galaxies were detected above the 3 sigma
level, indicating that cold gas is common, although no correlation was found
between the optical and far- infrared fluxes. Most detections were near the
instrumental threshold, and given an improved understanding of detection
confidence, we reconsider the 60um and 100um detection rate. After excluding
active galactic nuclei, peculiar systems, and background contamination, only 15
non-peculiar E and E/S0 galaxies from the RSA catalog are detected above the
98% confidence level, about 12% of the sample. An unusually high percentage of
these 15 galaxies possess cold gas (HI, CO) and optical emission lines
(Halpha), supporting the presence of gas cooler than 10E4 K. The 60um to 100um
flux ratios imply a median dust temperature for the sample of 30 K, with a
range of 23-38 K.
These detections define the upper envelope of the optical to far-infrared
relationship, F_fir propto F_B^0.24+/-0.08, showing that optically bright
objects are also brighter in the infrared, although with considerable
dispersion. A luminosity correlation is present with L_fir propto
L_B^1.65+/-0.28, but the dust temperature is uncorrelated with luminosity.
Models that contain large dust grains composed of amorphous carbon plus
silicates come close to reproducing the typical 60um to 100um flux ratios, the
far-infrared luminosity, and the L_fir - L_B relationship.Comment: 10 postscript pages, 2 tables, and 2 figure
Climatological lower thermosphere winds as seen by ground-based and space-based instruments
Comparisons are made between climatological dynamic fields obtained from ground-based (GB) and space-based (SB) instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI) instrument on the Upper Atmosphere Research Satellite (UARS). The GB data originate from meteor radars at Obninsk, (55° N, 37° E), Shigaraki (35° N, 136° E) and Jakarta (6° S, 107° E) and MF spaced-antenna radars at Hawaii (22° N, 160° W), Christmas I. (2° N, 158° W) and Adelaide (35° S, 138° E). We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB) analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data sources exists for semidiurnal tidal phases throughout the year. These results are consistent with phase retardation effects in the MF radar technique that are thought to exist above about 90km. Prevailing and tidal amplitudes from Shigaraki track year-to-year variations in SB fields, whereas in the Southern Hemisphere poorer agreement exists. The above hemispheric differences are due in part to MF vs. meteor radar techniques, but zonal asymmetries and day-to-day variability, combined with inadequate sampling, may also be playing a role. Based on these results, some obvious recommendations emerge that are relevant to combined GB/SB studies as part of TIMED and other future aeronomy missions.J. M. Forbes, Yu. I. Portnyagin, W. Skinner, R. A. Vincent, T. Solovjova, E. Merzlyakov, T. Nakamura, and S. Pal
- …