9,174 research outputs found

    Mass-energy balance for an S-1C rocket exhaust cloud during static firing

    Get PDF
    Rocket exhaust cloud mass-energy balance measurements for Saturn S1-C static firin

    Mirror Map as Generating Function of Intersection Numbers: Toric Manifolds with Two K\"ahler Forms

    Full text link
    In this paper, we extend our geometrical derivation of expansion coefficients of mirror maps by localization computation to the case of toric manifolds with two K\"ahler forms. Especially, we take Hirzebruch surfaces F_{0}, F_{3} and Calabi-Yau hypersurface in weighted projective space P(1,1,2,2,2) as examples. We expect that our results can be easily generalized to arbitrary toric manifold.Comment: 45 pages, 2 figures, minor errors are corrected, English is refined. Section 1 and Section 2 are enlarged. Especially in Section 2, confusion between the notion of resolution and the notion of compactification is resolved. Computation under non-zero equivariant parameters are added in Section

    The geometry and physical properties of exhaust clouds generated during the static firing of S-1C and S-2 rocket engines

    Get PDF
    An experimental program was conducted during the static firing of the S-1C stage 13, 14, and 15 rocket engines and the S-2 stage 13, 14, and 15 rocket engines. The data compiled during the experimental program consisted of photographic recordings of the time-dependent growth and diffusion of the exhaust clouds, the collection of meteorological data in the ambient atmosphere, and the acquisition of data on the physical structure of the exhaust clouds which were obtained by flying instrumented aircraft through the clouds. A new technique was developed to verify the previous measurements of evaporation and entrainment of blast deflector cooling water into the cloud. The results of the experimental program indicate that at the lower altitudes the rocket exhaust cloud or plume closely resembles a free-jet type of flow. At the upper altitudes, where the cloud is approaching an equilibrium condition, structure is very similar to a natural cumulus cloud

    Virtual Structure Constants as Intersection Numbers of Moduli Space of Polynomial Maps with Two Marked Points

    Full text link
    In this paper, we derive the virtual structure constants used in mirror computation of degree k hypersurface in CP^{N-1}, by using localization computation applied to moduli space of polynomial maps from CP^{1} to CP^{N-1} with two marked points. We also apply this technique to non-nef local geometry O(1)+O(-3)->CP^{1} and realize mirror computation without using Birkhoff factorization.Comment: 10 pages, latex, a minor change in Section 4, English is refined, Some typing errors in Section 3 are correcte

    Diurnal tidal variability in the upper mesosphere and lower thermosphere

    Get PDF

    Prepotentials for local mirror symmetry via Calabi-Yau fourfolds

    Full text link
    In this paper, we first derive an intrinsic definition of classical triple intersection numbers of K_S, where S is a complex toric surface, and use this to compute the extended Picard-Fuchs system of K_S of our previous paper, without making use of the instanton expansion. We then extend this formalism to local fourfolds K_X, where X is a complex 3-fold. As a result, we are able to fix the prepotential of local Calabi-Yau threefolds K_S up to polynomial terms of degree 2. We then outline methods of extending the procedure to non canonical bundle cases.Comment: 42 pages, 7 figures. Expanded, reorganized, and added a theoretical background for the calculation

    Solar cycle variability in mean thermospheric composition and temperature induced by atmospheric tides

    Get PDF
    In this paper we demonstrate that dissipation of upward propagating tides produces significant changes in the mean temperature of the thermosphere, ranging from +19æK at solar minimum to _15æK at solar maximum in the equatorial region. Our methodology consists of measuring the differential response of the thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) under solar minimum and solar maximum conditions to constant tidal forcing at its 97ækm lower boundary, as specified by the observationally based Climatological Tidal Model of the Thermosphere. Diagnosis of the model reveals that these changes are mainly driven by 5.3æ_m nitric oxide (NO) cooling, which more efficiently cools the thermosphere at solar maximum. The main role of the tides is to modify the mean molecular oxygen densities ([O2]) through tidal-induced advective transport, which then lead to changes in NO densities through oxygen-nitrogen chemistry. Through tidal-induced changes in temperature and O, O2, and N2 densities, effects on the ionosphere are also quite substantial; tidal-induced modifications to zonal-mean F region peak electron densities (NmF2) are of order _10% at solar maximum and _30% at solar minimum in the equatorial region. Our results introduce an additional consideration when attributing long-term changes in thermospheric temperature and electron densities to CO2 cooling effects alone; that is, dissipation of upward propagating tides may constitute an additional element of global change in the ionosphere-thermosphere (IT) system. ©2016. American Geophysical Union. All Rights Reserved

    Effects on the Function of Three Trophic Levels in Marine Plankton Communities under Stress from the Antifouling Compound Zinc Pyrithione

    Get PDF
    This study aimed to investigate functional responses of natural marine planktonic communities to stress from the antifouling compound zinc pyrithione (ZPT). Isotope labelling techniques (14C) were applied to study bacterial incorporation of leucine, photosynthetic activity of phytoplankton and grazing of labelled prey by zooplankton communities for 6 days after exposures to nominal concentrations of 0, 5, 25, 50 nM ZPT in a mesocosm experiment in Isefjord, Denmark. Significant direct effects were visible on chlorophyll α concentrations, which decreased in all exposed communities, to between 48 and 36% of control concentrations on Day 3, 1 day after the last exposure. Phytoplankton activities were also significantly affected on Day 3 with activities between 9 and 26% of control levels, as was zooplankton activities in the 25 and 50 nM exposures. In the 50 nM exposure the total community zooplankton activity was reduced to 25 ± 4%, and per individual to 46 ± 11% of control levels. Bacterial communities showed positive indirect effects with high activities (up to 183 ± 40%) due to higher amounts of available substrate from algal death. Pollution induced community tolerance analyses performed on phytoplankton and bacterial communities at the end of the experiment indicated a development of increased tolerance for phytoplankton in the 50 nM exposed communities, whereas there were no changes in tolerance in the bacterial communities. Multivariate analysis of the integrated functional response by the plankton communities revealed a significant difference (p \u3c 0.05) between exposed communities compared to controls in the first 3 days after last exposure and in the end of the experiment. The study provides evidence of diverse effects on the functions of marine plankton communities under stress from a pollutant. Direct effects lead to cascading indirect effects throughout the community, eventually causing different developments. Continuous exposure to ZPT could lead to severe long-term effects, causing more permanent changes in structure and function than observed here. The study demonstrates that it is possible to assess the functional effects of a stressor in a complex mesocosm system, and to determine effects in a complex plankton community, which were not predictable from laboratory studies
    corecore