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Abstract In this paper we demonstrate that dissipation of upward propagating tides produces
significant changes in the mean temperature of the thermosphere, ranging from +19 K at solar minimum to
−15 K at solar maximum in the equatorial region. Our methodology consists of measuring the differential
response of the thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) under
solar minimum and solar maximum conditions to constant tidal forcing at its 97 km lower boundary, as
specified by the observationally based Climatological Tidal Model of the Thermosphere. Diagnosis of
the model reveals that these changes are mainly driven by 5.3 𝜇m nitric oxide (NO) cooling, which more
efficiently cools the thermosphere at solar maximum. The main role of the tides is to modify the mean
molecular oxygen densities ([O2]) through tidal-induced advective transport, which then lead to changes
in NO densities through oxygen-nitrogen chemistry. Through tidal-induced changes in temperature and
O, O2, and N2 densities, effects on the ionosphere are also quite substantial; tidal-induced modifications
to zonal-mean F region peak electron densities (NmF2) are of order −10% at solar maximum and −30% at
solar minimum in the equatorial region. Our results introduce an additional consideration when attributing
long-term changes in thermospheric temperature and electron densities to CO2 cooling effects alone; that
is, dissipation of upward propagating tides may constitute an additional element of global change in the
ionosphere-thermosphere (IT) system.

1. Introduction

Understanding the different processes contributing to the energy budget of the ionosphere-thermosphere
(IT) system is fundamental to understanding its thermal, dynamical, and compositional structure. This under-
standing furthermore underlies achievement of more accurate space weather forecasts in support of tracking
and monitoring near-Earth orbiting satellites and space debris [e.g., Leonard et al., 2012; Emmert, 2015]. The
majority of the energy available to the IT system comes from above, through the absorption of extreme
ultraviolet (EUV) and ultraviolet (UV) solar radiation; however, the absorption of solar radiation in the lower
atmosphere supplies additional energy to the thermosphere through the dissipation of upward propagating
tides and gravity waves. The dynamical upward transport of energy due to thermal tides is in fact a regular
and repeatable energy source within the IT system. Recently, numerous studies [Talaat and Lieberman, 1999;
Oberheide et al., 2002; Forbes and Wu, 2006; Forbes et al., 2006; Zhang et al., 2006; Forbes et al., 2008, 2009;
Friedman et al., 2009; Mukhtarov et al., 2009; Oberheide et al., 2009; Xu et al., 2009; Pancheva et al., 2010; Zhang
et al., 2010a, 2010b; Oberheide et al., 2011a; Truskowski et al., 2014; Li et al., 2015] report on the climatology,
global structure, and variability associated with tides in the thermosphere, and yet the effects of their
dissipation on the IT system have received relatively little attention over the last 50 years.

Initial modeling studies by Hines [1965] and Lindzen [1967] showed that internal gravity waves and atmo-
spheric tides transport energy vertically from the lower atmosphere into the IT and affect the energy budget
of the IT once they are dissipated via eddy heat flux divergence. Lindzen and Blake [1970] stated that the heat
transport arising from semidiurnal (12 h) tidal dissipation is extremely important in maintaining exospheric
temperatures. Groves and Forbes [1984, 1985] also reported that diurnal (24 h) and semidiurnal tidal dissipation
can lead to globally averaged energy inputs comparable to the daily-averaged EUV absorption in the lower
thermosphere. In the early 1990s, Forbes et al. [1993] utilized the National Center for Atmospheric Research
(NCAR) thermosphere-ionosphere general circulation model (TIGCM) [e.g., Roble et al., 1988] and reported that
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dissipation of the migrating (i.e., Sun-synchronous) diurnal and semidiurnal tides alter the zonally and diur-
nally averaged temperatures by −5 to +8 K in the IT. Contrary to previously published works, they concluded
that tidal dissipation was not a significant contributor to the thermal energy budget of the thermosphere.

Other than direct tidal heating via eddy heat flux divergence, tidal dissipation could potentially contribute
to the energy budget of the IT system through changes in the mean circulation (i.e., adiabatic heating
and cooling) or changes in the density of neutral atmospheric constituents (e.g., O, O2, N2, NO, and CO2),
which determine radiative cooling rates and heating rates due solar radiation absorption or heating due to
exothermic chemical reactions. Akmaev and Shved [1980], Forbes et al. [1993], Smith et al. [2010], Yamazaki and
Richmond [2013], and Jones et al. [2014a, 2014b] all report changes in the major neutral constituents driven by
tidal-induced processes, which could affect the energy budget of the IT either through the absorption of solar
radiation, or by radiating themselves. Marsh and Russell [2000] and Marsh and Roble [2002] reported that daily
and seasonal nitric oxide (NO) variability from the halogen occultation experiment (HALOE) measurements
resulted from tidal vertical motions in the lower thermosphere. NO cooling is known to significantly con-
tribute to the energy budget of the thermosphere [e.g., Kockarts, 1980; Mlynczak et al., 2003]. More recently,
Oberheide and Forbes [2008], Ren et al. [2011], and Oberheide et al. [2013] all demonstrated that significant lon-
gitudinal variability in NO (and thus infrared cooling) is induced by nonmigrating tides, thus reinforcing the
notion that NO is responsive to tidal dynamics.

Many of these different tidal effects on the IT energy budget could also have a strong solar cycle depen-
dence. For example, Oberheide et al. [2009] and references therein show that tidal dissipation becomes more
important as solar activity increases; i.e., smaller (larger) neutral density leads to reduced (increased) dissipa-
tion during solar cycle minimum (maximum). This could potentially impact the altitudes at which the tides
dissipate and subsequently deposit heat into the background IT via eddy heat flux divergence. Forbes [1978]
showed that tidal amplitude variations in major (O, O2, and N2) and minor (Ar, He, and H) thermospheric con-
stituents were solar cycle dependent, potentially indicating that there is solar cycle variability associated with
atmospheric tidal effects on the energy budget of the IT. Moreover, Mlynczak et al. [2010, 2014] reported that
NO (and CO2) infrared radiative (IR) cooling in the thermosphere has a strong solar cycle dependence, imply-
ing that the tidal effects described by Oberheide and Forbes [2008], Ren et al. [2011], and Oberheide et al. [2013]
on the NO IR cooling could modulate its inherent solar cycle behavior.

All the studies discussed above motivate this current work, which seeks to better understand to what extent
the dissipation of atmospheric tides contributes to the zonally and diurnally averaged (or the longitude and
time means, hereafter referred to as “zonal mean”) thermal energy budget of the IT system. Toward this
end, we employ the NCAR thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM)
to address this topic by performing a series of numerical experiments using observationally based back-
ground (i.e., zonally and diurnally averaged) and tidal lower boundary conditions [after Jones et al., 2014a].
We quantify and identify the different tidal-induced mechanisms responsible for maintaining the zonal-mean
thermal energy budget of the IT system by calculating differences in the individual forcing terms of the ther-
modynamic energy equation between simulations including and excluding lower boundary tidal forcing.
Furthermore, solar cycle dependencies associated with these tidal impacts on the zonal-mean temperature
structure of the thermosphere are evaluated from TIE-GCM simulations under solar minimum, medium, and
maximum conditions. Results presented herein are considered and discussed in light of the aforementioned
research efforts, as well as quantified relative to the inherent solar cycle variability associated with IT system
parameters.

2. TIE-GCM Simulations and Methodology

The NCAR TIE-GCM is a physics-based numerical general circulation model extending from ∼97 km to
∼600–750 km (depending on solar cycle) designed to self-consistently simulate the dynamics, thermody-
namics, electrodynamics, and chemistry of the IT system from first-principles for a predetermined set of solar
irradiance values (i.e., using a 10.7 cm solar radio flux (F10.7)) and geomagnetic proxies (hemispheric power
value after [Evans, 1987] and cross-cap potential drop). The reader is referred to Dickinson et al. [1981, 1984],
Roble et al. [1988], Richmond et al. [1992], Wang [1998], Qian [2013], and Richmond and Maute [2014] for a more
comprehensive description of the model physics, as well as the historical development of the TIE-GCM.

TIE-GCM simulations reported on herein were performed using version 1.94 of the model at a horizontal res-
olution of 2.5∘ × 2.5∘ (longitude × latitude) and a vertical resolution of 4 points per scale height. September
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climatologies were simulated by running the TIE-GCM for the fifteenth day of the month (i.e., day of year 258)
until the model reached a diurnally reproducible state. To elucidate the solar cycle variability associated with
tidal dissipation in the IT solar minimum, medium, and maximum conditions were simulated using F10.7 values
of 75, 120, and 200 sfu (10−22 W m−2 Hz−1), respectively, and these F10.7 values were held constant through-
out the entire model run. Geomagnetic quiescent conditions were replicated by using a hemispheric power
value of 8 GW, and cross-cap potential drop of 30 kV, and these values were also held constant in all of our
simulations. Like the TIE-GCM simulations performed by Jones et al. [2014a], we multiplied the TIE-GCM solar
fluxes in the 8–70 Å range by a factor of 4.4 [after Fang et al., 2008] in order to more realistically simulate E
region electrodynamics. The sensitivity of our results to this assumption is discussed in section 3.3.

We utilized observationally based background (or zonal mean) and tidal lower boundary conditions that are
identical to those described in detail by Jones et al. [2014a]. Considering that this study is focused on inter-
preting the tidal effects on the thermal energy budget of the IT system, we briefly summarize the tidal lower
boundary conditions employed in our TIE-GCM simulations. Atmospheric tides produced in situ in the IT via
UV and EUV solar radiation absorption are inherently accounted for in the TIE-GCM. Migrating and nonmi-
grating diurnal and semidiurnal tidal perturbations (with zonal wave numbers between ±6) generated in
the troposphere, stratosphere, and mesosphere from the Climatological Tidal Model of the Thermosphere
(CTMT) [see Oberheide et al., 2011b] are introduced as model lower boundary conditions. To determine the
tidal-induced changes on the zonal-mean thermal energy budget of the IT, differences between TIE-GCM
runs including CTMT tidal forcing with those either including only specific tidal components, or removing
CTMT tidal forcing altogether (i.e., only the zonal-mean wind, temperature, and geopotential height fields are
forced) under varying solar cycle conditions, are evaluated. Furthermore, differences in the forcing terms of
the thermodynamic energy equation are analyzed to establish the dominant physical mechanisms respon-
sible for modifying the zonal-mean thermal balance of the IT and the solar cycle variability associated with
these mechanisms.

3. Result and Discussion
3.1. Tidal Impacts on the Zonal-Mean Temperature
Figure 1 depicts the zonal-mean temperature differences induced by tidal dissipation as a function of latitude,
altitude, and solar cycle from the TIE-GCM. Differences between results including and excluding CTMT tidal
forcing (hereafter referred to as “with/without TBCs”) are shown in the first row of Figure 1 under solar mini-
mum (Figure 1a), medium (Figure 1b), and maximum conditions (Figure 1c) during September. We chose to
present TIE-GCM results from the month of September because the tides exert their largest influence on the
zonal-mean temperatures in our TIE-GCM simulations around the equinoxes (not shown) and also because
the tidal forcing from the lower atmosphere is at or near its maximum [e.g., Zhang et al., 2006; Forbes et al.,
2008; Oberheide et al., 2009, 2011b]. Furthermore, the results illustrated in Figure 1 for September are rep-
resentative of the tidal effects on the zonal-mean temperatures at equinox (i.e., analogous tidal impacts on
the zonal-mean temperatures are calculated during March and therefore not shown). Vertically propagating
tides affect the zonal-mean temperatures of the thermosphere over all levels of solar activity with maximum
(minimum) differences of+19 K (−15 K) occurring over the equator (±30∘ latitude) under solar minimum (max-
imum) conditions. The+19 K increase in zonal-mean temperature centered over the equator at solar minimum
induced by the dissipating tides (Figure 1a) is reduced as solar activity increases, only reaching +6 K at solar
medium (Figure 1b), and eventually a minimum of −8 K at solar maximum (Figure 1c). Essentially, the effect of
tidal dissipation on the zonal-mean temperature of the thermosphere depends on solar cycle; i.e., during solar
minimum there is a net increase in zonal-mean temperature at equatorial latitudes, while during solar maxi-
mum tidal dissipation leads to a decrease in zonal-mean temperature at equatorial latitudes. Similar behavior
(i.e., zonal-mean temperature differences decreasing with increasing solar activity) in the zonal-mean tem-
perature changes driven by the tides is also depicted in Figures 1a–1c at latitudes poleward of the equator.
The one consistent feature in the zonal-mean temperature differences depicted in Figures 1a–1c is the +2 to
+4 K increase in the zonal-mean temperature differences below ∼110 km, which tend to move southward as
solar activity increases.

The spatial structure and magnitude of the zonal-mean temperature changes induced by tidal dissipation
illustrated in Figure 1b are consistent with those calculated by Forbes et al. [1993], who only considered migrat-
ing diurnal and semidiurnal tides at the TIGCM lower boundary. Thus, we revaluate the relative importance
of the tidal components most responsible for altering the zonal-mean temperature structure of the IT system
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Figure 1. Zonal-mean temperature differences between TIE-GCM simulations under different CTMT tidal lower
boundary and solar cycle conditions during the month of September as a function of latitude and altitude. Differences
computed from TIE-GCM simulations under solar (a, d, and g) minimum, (b, e, and h) medium, and (c, f, and i) maximum
conditions are shown. Differences computed between TIE-GCM simulations including and excluding CTMT tidal lower
boundary forcing are shown (Figures 1a–1c); differences between TIE-GCM simulations including all tidal components
and only the DW1 from CTMT at the model lower boundary are shown (Figures 1d–1f ); and differences between
TIE-GCM simulations including all tidal components and only the DW1 and SW2 from CTMT at the model lower
boundary are shown (Figures 1g–1i). Zonal-mean temperature differences are contoured every ±2 K.

by computing difference fields between TIE-GCM simulations including CTMT lower boundary tidal forcing
with TIE-GCM simulations that include only a linear combination of specific tidal components from the CTMT.
Figures 1d–1f show the differences between simulations that include all of the CTMT tidal components forced
at the model lower boundary and simulations that only include tidal forcing from the migrating diurnal tide
with zonal wave number 1 (DW1) as a function of latitude, altitude, and solar cycle. By including just DW1, the
mean temperature differences are reduced by ∼40–50% under solar minimum and medium conditions at
low latitudes (Figures 1d and 1e). Under solar maximum conditions DW1 has a smaller effect, only accounting
for at most −4 K (or ∼25–35%) changes in the zonal-mean temperature (Figure 1f ).

Including the migrating semidiurnal tide with zonal wave number 2 (SW2) with the DW1 at the TIE-GCM lower
boundary explains the majority of the zonal-mean temperature differences in the IT at all levels of solar activity
(Figures 1g–1i). Specifically, mean temperature differences ranging from −1 to +10 K, −5 to +2 K, and −11 to
+1 K under solar minimum, medium, and maximum conditions, respectively, that are unaccounted for by the
DW1 in Figures 1d–1f are reduced to −4 to +2 K at all levels of solar activity by considering both migrating
tidal components (Figures 1g–1i). The results shown in Figures 1d–1i lead us to conclude that the migrating
tides explain at least 70% of the zonal-mean temperature differences in the TIE-GCM regardless of solar cycle.
Therefore, our remaining interpretation of the different mechanisms responsible for driving the solar cycle
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variability in the zonal-mean temperature differences calculated from the TIE-GCM will be ascribed to the
migrating tides, with the nonmigrating playing a secondary role.

3.2. Diagnosing the Solar Cycle Variability in Zonal-Mean Temperature
Diagnosing the mechanisms by which the tides act to change the zonal-mean temperature is facilitated by
calculating each individual term of the thermodynamic energy equation and quantifying their changes due
to the presence of the tides in the TIE-GCM as a function of solar cycle. To obtain this equation, we decompose
the dependent variables (e.g., temperature, winds, diabatic, and heating) in the full thermodynamic energy
equation into zonal-mean quantities varying only in latitude and altitude, and perturbation (tidal) quantities
depending on all three spatial dimensions and time. Assuming Earth’s atmosphere is in hydrostatic equi-
librium and following Dickinson et al. [1975] and Holton [1975], we subsequently calculate longitudinal and
temporal means to arrive at the zonal-mean form of the equation in height and spherical coordinates:

v
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cp0
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𝜌0cp0
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where the terms with overbars represent the zonal-mean quantities. The variables in equation (1) are as
follows: 𝜃 = latitude, z = altitude, a = radius of the Earth, g = gravity, cp0 = basic state specific heat at con-
stant pressure, 𝜌0 = basic state density, T = temperature, v = meridional wind velocity, w = vertical wind
velocity, KT = thermal conductivity, KE = eddy diffusion coefficient, J = diabatic heating rate, S = static sta-
bility, and G = eddy heat source term. The static stability and eddy heat source term are defined following
Dickinson et al. [1975] and Holton [1975]:
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where the prime terms represent the perturbations or tides (i.e., residuals from the zonal-mean quantities),
R is the universal gas constant, m is the mean molecular weight, H is the mean scale height, and 𝜅 = R

cp
.

The first term on the left-hand side of equation (1) is the meridional temperature advection term, and the
second term on the left-hand side of equation (1) is the adiabatic heating and cooling term (or Adia. H/C rep-
resenting changes in temperature as an air parcel is moved vertically). The first term on the right-hand side of
equation (1) is the diabatic heating and cooling term (or Dia. H/C). The diabatic heating rate (J) represents the
differences in the diabatic heat sources (Q) and sinks (L). Diabatic heat sources in the TIE-GCM include radia-
tive heating, joule heating, heating due to oxygen (O) recombination, heating due to molecular diffusion, and
heating due to numerical diffusion. Diabatic cooling terms in the TIE-GCM result from 5.3μm NO, 15μm carbon
dioxide (CO2), and 63 μm O(3P) IR radiative cooling. The second term on the right-hand side of equation (1) is
the eddy heat source term (or Eddy Heat), which represents the deposition of heat (energy) by the dissipating
tides. The final term on the right-hand side of equation (1) is the dissipative term that includes both vertical
molecular heat conduction (thermal conductivity) and eddy diffusion of heat. The effects of eddy conduc-
tivity on the zonal-mean temperature are largest within the first two model scale heights (i.e., the TIE-GCM
lower boundary is situated at ∼97 km), above which the thermal conductivity term becomes the dominant
dissipative term in the TIE-GCM.

To understand how the dissipating tides (i.e., mainly the migrating tides) act to induce solar cycle depen-
dency in the zonal-mean temperature differences illustrated in Figure 1, differences in the Adia. H/C term,
Eddy Heat, Dia. H/C terms, and their sum from TIE-GCM simulations with/without TBCs under solar mini-
mum and maximum conditions are presented in Figure 2. Because the zonal-mean temperature differences
depicted in Figures 1a–1c are fairly constant with altitude above ∼200 km due to molecular conduction,
Figure 2 only illustrates results limited to the 100–200 km height regime, recognizing that differences in the
zonal-mean temperatures mainly occur at lower thermospheric altitudes where the neutral density is largest.
Furthermore, the differences induced by the dissipating tides on the advective and dissipative terms are small
relative to the other terms and therefore are not shown in Figure 2. Figures 2a and 2b show adiabatic heat-
ing and cooling differences ranging from about ±30 K d−1 at low latitudes and lower thermospheric altitudes
driven by tidal dissipation, during both solar minimum and maximum. Differences in the Eddy Heat term
shown in Figures 2c and 2d display the opposite latitudinal structure (i.e., latitudinal structure of the maxima
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Figure 2. Zonal-mean difference fields from individual terms in the thermodynamic energy equation calculated from
TIE-GCM simulations with/without TBCs including the Aida. (a and b) H/C term, (c and d) Eddy Heat term, (e and f) the
Dia. H/C term, and (g and h) the sum of the aforementioned terms during the month of September at low latitudes and
between 100 and 200 km under solar minimum (Figures 2a, 2c, 2e, and 2g) and maximum (Figures 2b, 2d, 2f, and 2h)
conditions. Zonal-mean forcing term differences are contoured every ±10 K d−1.
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Figure 3. Zonal-mean diabatic heating and cooling term differences in the thermodynamic energy equation computed from TIE-GCM simulations with/without
TBCs including the (a and d) radiative heating term (QSolar), (b and e) loss due to NO cooling (LNO), and (c and f) the sum of differences during the month of
September at low latitudes and between 100 and 200 km under solar minimum (Figures 3a–3c) and maximum (Figures 3d–3f ) conditions. Zonal-mean forcing
term differences are contoured every ±5 K d−1.

and minima) of those differences shown for the Adia. H/C term, with values ranging from −50 to +60 K d−1.
Also, the tidal-induced changes in both the Adia. H/C and Eddy Heat terms do not exhibit noticeable solar cycle
variations that would lead to changes in the zonal-mean temperature differences depicted in Figures 1a and
1c. Therefore, we deduce that neither tidal-induced adiabatic heating and cooling (and thus the zonal-mean
residual circulation induced by tides) nor direct tidal heat transport is responsible for driving the solar cycle
variability associated with the zonal-mean temperature differences in our TIE-GCM simulations.

Figures 2e and 2f clearly show that tidally driven Dia. H/C term differences exhibit strong solar cycle varia-
tions with mainly positive differences occurring at solar minimum and negative differences at solar maximum.
Under solar minimum (maximum) conditions Dia. H/C differences are relatively small at low latitudes below
∼150 km (∼120 km), while above ∼150 km (∼120 km) differences increase (decrease) up (down) to +25 K d−1

(−25 K d−1) in Figure 2e (Figure 2f ). The solar cycle variability associated with the changes in Dia. H/C are in
the same sense as that of the zonal-mean temperature differences shown in Figures 1a and 1c, which depict
increases in the zonal-mean temperature at solar minimum and decreases in the zonal-mean temperature at
solar maximum. This same type of solar cycle variability also manifests itself in the sum of the Adia. H/C, Eddy
Heat, and Dia. H/C term differences at solar minimum and maximum (Figures 2g and 2h). Similarities in lati-
tudinal and altitudinal structure between Figures 2c–2d and Figures 2g–2h show that the Eddy Heat term is
primarily responsible altering the zonal-mean temperature distribution in the thermosphere. However, solar
cycle variations in the Dia. H/C term lead to solar cycle variability in the tidal-induced zonal-mean tempera-
ture differences in the TIE-GCM. Evidence for the previous claim is provided by comparing Figures 2g and 2h.
Specifically, the −10 K d−1 decrease calculated near the equator and 120 km in Figure 2g at solar minimum
reaches values of −25 K d−1 at solar maximum that extend to higher latitudes and altitudes in Figure 2h. Also,
the +45 K d−1 increase above 180 km depicted in Figure 2g at solar minimum is reduced to +20 K d−1 at solar
maximum and its latitudinal extent is more confined in Figure 2h. The upshot of the above discussion is that
solar cycle variability in the zonal-mean thermal balance of IT system is induced by the tides through the Dia.
H/C term in the zonal-mean thermodynamic energy equation.

As previously stated the diabatic heating and cooling term in the TIE-GCM is determined by the differences
between heating source terms and chemical cooling terms. Figure 3 shows the changes in the radiative
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Figure 4. Percent changes in [NO] from TIE-GCM simulations
with/without TBCs at low latitudes (±30∘) and between 100
and 200 km during September under (a) solar minimum and
(b) maximum conditions. Percent differences are contoured
every ±10%.

heating (QSolar), NO cooling (LNO), and the sum
of these two due the tides under solar minimum
and solar maximum conditions during the month
of September. Only the tidal-induced changes in
QSolar and LNO are shown in Figure 3 because the
sum of these differences depicted in Figures 3c
and 3f account for most of the full Dia. H/C
term differences shown in Figures 2g and 2h.
Comparing the differences in Figures 3a–3c and
Figures 3d–3f makes it easy to see that the
solar cycle variability in the zonal-mean tem-
perature differences driven by the tides results
from changes in the NO cooling via the Dia. H/C
term in the zonal-mean thermodynamic energy
equation. Stronger (weaker) positive differences
between TIE-GCM simulations with/without TBCs
are on the order of +25 K d−1 (+10 K d−1) in
the radiative heating are reduced by weaker
(stronger) negative differences in NO cooling of
−10 K d−1 (−30 K d−1) in the lower thermosphere.
The aggregate of effect of increased NO cooling
during solar maximum is shown in Figure 3f and
leads to a 25 to 30 K d−1 net reduction in the
Dia. H/C term. This ∼30 K d−1 decrease in the
Dia. H/C term is at least 25 K d−1 stronger than
aggregate differences in the radiative heating and
NO cooling illustrated in Figure 3c during solar
minimum. Therefore, the +19 K zonal-mean tem-
perature differences at low-latitudes driven by the
Adia. H/C, Eddy Heat, and Dia. H/C during solar
minimum (Figure 1a) are reduced by the intensi-

fied NO cooling forced by the dissipating tides to −8 K during solar maximum (Figure 1c). In the subsequent
subsection we investigate how the tides act to change the NO IR cooling in the TIE-GCM.

3.3. Tidal-Induced NO Variations at Solar Minimum and Maximum
NO and the 5.3 μm emission from NO are important to the aeronomy and thermal balance of the IT system and
are known to vary substantially with solar [e.g., Mlynczak et al., 2010, 2014] and auroral activity [e.g., Solomon
et al., 1999; Barth et al., 2003; Knipp et al., 2013]. As stated in section 1 and illustrated in section 3.2, the dis-
sipating tides augment the NO 5.3 μm IR cooling in the lower thermosphere, and these changes depend on
longitude, latitude, altitude, and solar cycle. Therefore, this subsection focuses on investigating the mecha-
nism by which the vertically propagating tides are acting to enhance NO cooling in the lower IT, with specific
attention to the solar cycle variations associated with this mechanism.

Mlynczak et al. [2003] listed a number of different processes that can lead to changes in the amount of radiation
emitted by NO including the following: (1) increased NO number density ([NO]); (2) increased temperature;
(3) exothermic production of NO; and (4) increased O number density ([O]). For example, process (3) occurs
during increased geomagnetic activity and thus is not important in our numerical experiments because the
geomagnetic proxies are set and held constant at values representative of quiescent conditions. Outside of
the inherent temperature increase with solar cycle, the effect of process (2) on our TIE-GCM results is com-
paratively small, as changes in the zonal-mean temperature induced by tidal dissipation only vary by at most
±20 K (see Figures 1a–1c). Thus, processes (1) and (4) are most likely producing the solar cycle variability in
the Dia. H/C term and the zonal-mean temperature differences depicted in Figures 1–3.

The effect of increased [NO] on the Dia. H/C term in the zonal-mean thermodynamic energy equation due
to the dissipating tides is quantified in Figure 4, which shows the percent changes in [NO] between TIE-GCM
simulations with/without TBCs under solar minimum (Figure 4a) and maximum (Figure 4b) conditions in the
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Figure 5. (a) Zonal-mean NO volume emission rate (VER) averaged over low latitudes (±30∘) and between 100 and
200 km during September under solar minimum (dotted lines) and maximum (dashed lines) conditions. Black (Blue)
lines represent TIE-GCM simulations performed using higher (baseline) soft X-ray solar fluxes. (b and c) Same as
Figures 3b and 3e, respectively, except from TIE-GCM simulations performed using the baseline soft X-ray solar fluxes.

lower thermosphere. At solar minimum (maximum) tidal dissipation increases the [NO] by up to 120% (40%)
between 100 and 200 km at low latitudes, with the largest changes centered over the equator. These large
increases and their latitude-altitude extent are consistent with more NO cooling due to the tides at solar min-
imum and maximum, and low latitudes up to ∼200 km in Figures 3b and 3e, respectively. Although the tides
have a greater impact on the [NO] at solar minimum (i.e., larger relative increase in [NO]), their influence on
the 5.3 μm NO cooling is largest at solar maximum when the NO volume emission rates (VER and thus [NO])
are a factor of∼4 higher than at solar minimum (Figure 5). In this way the tides act to additionally enhance the
inherent solar cycle behavior of [NO] in the lower thermosphere. While the largest changes in [NO] in Figure 4
and the diabatic heating and cooling terms in Figure 3 are located over the equator, greater changes in the
zonal-mean temperatures due to the tides in Figures 1a–1c do occur (e.g., the<−10 K in Figure 1c above±15∘

latitude) as a result of the residual meridional circulation driven by the tides, which leads to upwelling at low
to middle latitudes (i.e., analogous to the type described by Yamazaki and Richmond [2013] for the DW1).

Before proceeding further in our analysis of the tidal mechanisms responsible for driving [NO] changes in the
equatorial lower thermosphere, we return to the question raised in section 2, as to the sensitivity of NO and
its 5.3 μm emission to increased solar soft X-ray fluxes. To further explore this possibility, consider Figure 5,
which displays how changes in the solar soft X-ray fluxes impact the NO cooling in the equatorial lower ther-
mosphere in the TIE-GCM. Specifically, Figure 5a depicts the mean NO VER under solar minimum (dotted lines)
and maximum (dashed lines) conditions for the increased (black lines) [after Fang et al., 2008] and baseline
(blue lines) soft X-rays. Analogous to what was reported by Siskind et al. [1990], increasing the solar soft X-rays
increases NO VERs as a result of increased [NO]. The NO VER at solar minimum forced with the baseline solar
soft X-rays in the TIE-GCM is comparable to thermosphere-ionosphere-mesosphere-electrodynamics general

JONES ET AL. TIDAL INDUCED SOLAR CYCLE VARIABILITY 5845



Journal of Geophysical Research: Space Physics 10.1002/2016JA022701

circulation model (TIME-GCM) results presented in Oberheide et al. [2013]. However, the NO VER illustrated in
Figure 5a (and in Oberheide et al. [2013]) at solar minimum and maximum is at least a factor 2 higher than
those measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) [after Oberheide
et al., 2013] and SABER [Mlynczak et al., 2010; Oberheide et al., 2013]. Thus, increasing the solar soft X-rays in
the TIE-GCM only further increases the discrepancies between modeled (i.e., TIE-GCM and TIME-GCM) and
measured NO VERs. Conversely, a comparison between Figures 5b and 5c and Figures 3b and 3e shows that
the tidal-induced changes in the NO cooling at solar minimum and maximum are unaffected by changes
in the solar soft X-ray flux (i.e., differences of only −2 K d−1). This is also the case for the tidal-induced
zonal-mean temperature and constituent differences (i.e., only varying by ±2–3 K and 5–10%); therefore,
increases in TIE-GCM solar soft X-ray fluxes have little consequence for the subsequent analysis of the dif-
ferent tidal mechanisms responsible for altering the NO cooling in the equatorial lower thermosphere, as
well as on the results and conclusions presented herein. It should also be emphasized that performing a
“cost-benefit” analysis of the trade-offs between improved TIE-GCM electrodynamics and improved TIE-GCM
E region neutral chemistry via solar soft X-ray changes is outside the scope of this paper but does warrant
additional analysis.

In order to understand how the tides are acting to change the [NO], one must analyze the [NO] continuity
equation. Following the methodology and terminology described above for deriving the zonal-mean ther-
modynamic energy equation and Jones et al. [2014b] for the zonal-mean [O] continuity equation, we arrive at
the zonal-mean [NO] continuity equation including production and loss:

𝜕[NO]
𝜕t

= P − L[NO] − 𝜕

𝜕𝜃
v[NO] − 𝜕

𝜕z
w[NO] − 𝜕

𝜕𝜃
v′[NO]′ − 𝜕

𝜕z
w′[NO]′, (2)

where P (L) is the production (loss) of [NO]. Below, we outline the main (i.e., a first-order set of reactions)
production and loss mechanisms of [NO] in the TIE-GCM [after Roble and Ridley, 1987; Roble et al., 1987; Roble,
1995]. Close to the TIE-GCM lower boundary (below ∼110 km) production of [NO] mainly occurs via

N(2D) + O2 → NO + O. (R1)

Above ∼110 km the following temperature-dependent reaction becomes the dominant source of NO:

N(4S) + O2 → NO + O. (R2)

In the lower thermosphere the principal loss mechanism for NO is with ground state atomic nitrogen (N(4S)):

NO + N(4S) → N2 + O. (R3)

Lastly, a much smaller and less important loss mechanism for NO is with excited atomic nitrogen (N(2D)):

NO + N(2D) → N(4S) + O. (R4)

The reaction rates for (R1)–(R4) are 𝛽1 = 5 × 10−12 cm3 s−1, 𝛽2 = 1.510 × 10−11 exp( −3600
T

) cm3 s−1,

𝛽3 = 3.410 × 10−11
√

T
300

cm3 s−1, and 𝛽4 = 7 × 10−11 cm3 s−1 [after Roble and Ridley, 1987; Roble et al., 1987;
Roble, 1995]. The third and fourth terms on the right-hand side of equation (2) represent meridional and ver-
tical advective tidal transport of [NO] (i.e., the transport of [NO] due to tidally induced zonal-mean winds) or
the mechanism described by Yamazaki and Richmond [2013]. The last two terms on the right-hand side of
equation (2) represent meridional and vertical net tidal transport of [NO] (i.e., [NO] transport due to the tides
themselves via [NO] flux divergence) or the mechanism described in Jones et al. [2014b].

The largest [NO] differences displayed in Figure 4 occur in the altitude regime where transport, chemical, and
diffusion processes could be of equal importance. To determine which one of the above processes is of utmost
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importance in the lower thermosphere, one can refer to their respective time constants, which are calculated
using the following:

𝜏chemNO
= 1

𝛽3[N(4S)] + 𝛽4[N(2D)]
,

𝜏eddy =
H

2

Kzz

,

𝜏mole =
H

2

NO

D(NO,N2)
,

𝜏v,trans =
L

vTidal
,

𝜏w,trans =
HNO

wTidal
,

𝜏v,adv = L
vadv

,

𝜏w,adv =
HNO

wadv
,

where Kzz is the eddy diffusion coefficient from the TIE-GCM, HNO is the diffusive-equilibrium scale height of
NO, D(NO,N2) is the mutual diffusion coefficient [after Banks and Kockarts, 1973], L is the characteristic merid-
ional length (we assumed it to be∼ 10∘ in latitude or 1000 km), vTidal (wTidal) is the effective meridional (vertical)
net tidal transport velocity that is defined as v′[NO]′ ≈ vTidal[NO] (w′[NO]′ ≈ wTidal[NO]) [after Gardner and Liu,
2010], and vadv (wadv) is equal to v (w) or the zonal-mean meridional (vertical) wind. Figure 6 shows the time
constants for the terms in the NO continuity equation as a function of altitude and solar cycle averaged over
low latitudes in the lower thermosphere. Down close to the TIE-GCM lower boundary (∼100 km) the lifetime
of NO due to tidal and advective (in both directions) transport, as well as eddy and molecular diffusion, are on
the order of 10 days at all levels of solar activity (Figure 6). However, at altitudes where the [NO] changes are
largest due to the tides in Figures 4a and 4b the chemical time constant (black lines, Figure 6) is shorter than
all other time constants, including molecular diffusion (cyan lines, Figure 6) at all levels of solar activity. Specif-
ically, the chemical lifetime of NO is shorter than a day starting at ∼125 km (∼145 km) under solar minimum
(maximum) conditions in the TIE-GCM, suggesting that NO is not in diffusive equilibrium. This means that the
dynamical effects of the tides on the NO distribution are playing a comparatively small role in determining the
zonal-mean NO distribution in the thermosphere, unlike that of O [see Yamazaki and Richmond, 2013; Jones
et al., 2014b]. Therefore, it must be through the production and loss terms in the zonal-mean [NO] continuity
equation that the tides are acting to change the [NO] and thus the NO 5.3 μm IR cooling in the TIE-GCM.

To further elucidate how the tides modulate the production and loss terms in the [NO] continuity equation,
ultimately driving the percent changes in [NO] shown in Figure 4, we assumed that [NO] was in chem-
ical equilibrium and derived a simplified equation using chemical reactions (R1)–(R4) following Siskind
et al. [2004]:

[NO]chem =

(
𝛽1 [N(2D)] + 𝛽2[N(4S)]

)
[O2]

𝛽4[N(2D)] + 𝛽3[N(4S)]
≈ [NO], (3)

where [O2] is the molecular oxygen number density. Figures 7a and 7d illustrate the percent changes
calculated assuming [NO] is in chemical equilibrium (i.e., [NO]Chem) from equation (3) between TIE-GCM
with/without TBCs at solar minimum and maximum in lower equatorial thermosphere. Figures 7a and 7d
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Figure 6. NO time constants averaged over low latitudes (±30∘) for chemistry (black), eddy diffusion (blue), molecular
diffusion (cyan), tidal transport (green and red), and advective transport (purple and magenta) as a function of altitude
during September under solar minimum (dotted), medium (solid), and maximum (dashed) conditions.

reveal that the zonal-mean NO distribution in the equatorial lower thermosphere is mainly in chemical equi-
librium, as percent changes in [NO]Chem can almost replicate the differences calculated not assuming NO is in
chemical equilibrium (Figures 4a and 4b). In particular, the latitudinal and vertical structure of [NO]Chem differ-
ences display maxima of ∼135% (∼50%) at ∼125 km consistent with those depicted in Figure 4a (Figure 4b)
during solar minimum (maximum), which then extend above 200 km with values on the order of ∼60%
(∼30%). With that being said, the [NO]Chem maxima during solar minimum and maximum are larger by about
10–15% of those calculated for [NO], which quantifies the role the other mechanisms, including dynamics
and diffusion play in changing the [NO] as a result of tidal dissipation.

The remaining four plots in Figure 7 show that the main way the tides act to alter the NO chemistry is through
[O2], leading to increased production in reactions (R1) and (R2), which is also reflected by a decrease in [N(4S)]
(and [N(2D)], not shown). Figures 7b and 7e (Figures 7c and 7f) illustrate mostly increases (decreases) in [O2]
([N(4S)]) in the equatorial lower thermosphere with differences of at least +15% (−30%) occurring at the alti-
tudes where the [NO] percent changes reach their maximum when the tides are included at the TIE-GCM lower
boundary. In addition, Figure 7 shows that the tides have a larger impact on the [O2] and [N(4S)] during solar
minimum as compared to solar maximum, offering an explanation as to why the increase in [NO] is larger at
solar minimum.

The above explanation for the more pronounced increase of [NO] at solar minimum as compared to solar max-
imum is further strengthened by the results depicted in Figure 8. Specifically, Figure 8a shows that the O/O2

ratio is decreased more under solar minimum conditions (dotted line) than under solar maximum conditions
(dashed line) in the equatorial lower thermosphere, with values ranging from −22 to −16% and from −18
to −13%, respectively. Siskind et al. [1989] showed that [NO] is inversely proportional to the O/O2 ratio, so a
greater reduction in the O/O2 ratio at solar minimum versus that calculated at solar maximum leads to larger
[NO] percent changes attributable to the tides at solar minimum in the TIE-GCM. Figures 8c and 8e depict
this inverse relationship in a latitude-height representation of Figure 8a and clearly illustrate that the larger
reduction in O/O2 (<−30%) centered over the equator leads to a larger increase in [NO] in Figures 4a and 7a at
solar minimum as compared to solar maximum. Greater reductions in the O/O2 ratio driven by the dissipating
tides result from larger increases in [O2] (Figure 7b) and larger decreases in [O] (Figure 8b) at solar minimum as
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Figure 7. Percent changes in (a and d) [NO]Chem, (b and e) [O2], and (c and f) [N(4S)] from TIE-GCM simulations with/without TBCs at low latitudes and between
100 and 200 km during September under solar minimum (Figures 7a–7c) and maximum (Figures 7d–7f ) conditions. Percent differences are contoured
every ±10%.

compared to solar maximum (Figures 7e and 8d). Also, not only is there more O generated naturally to collide
with NO causing spontaneous emission of IR radiation at solar maximum than at solar minimum; the reduc-
tion in [O] due to the tides is smaller at solar maximum than at solar minimum (in a relative sense not in an
absolute sense, Figures 8b and 8d), thereby leading to more tidal-induced NO cooling at solar maximum than
at solar minimum. Therefore, we can conclude that tidal-induced changes in the major neutral constituents of
the thermosphere act to modulate the thermosphere’s “natural thermostat” or NO 5.3μm IR cooling [Mlynczak
et al., 2003], thereby generating solar cycle variability in the zonal-mean thermal energy budget via diabatic
heating and cooling.

We diagnose tidal-induced changes in [O2] by deriving time constants for transport, chemical, and diffusion
processes that describe the lifetime of a O2 molecule in the lower thermosphere. The time constants for eddy
diffusion and meridional transport of O2 (both advective and tidal) are the same as those shown above for NO,
except that v′[O2]′ ≈ vTidal[O2]. The time constants for chemistry, molecular diffusion, and vertical transport
of O2 (both advective and tidal) have changed slightly from their form above to include the loss of O2 due
to N(2D) and N(4S), as well as charge exchange with O+, the mutual diffusion coefficient of O2 (D(O2,N2))
[after Colegrove et al., 1966], the diffusive-equilibrium scale height of O2 (HO2

), and wTidal now accounts for O2

(w′[O2]′ ≈ wTidal[O2]) resulting in the following:

𝜏chemO2
= 1

𝛽1[N(2D)] + 𝛽2[N(4S)] + k1[O+]
,

𝜏mole =
H

2

O2

D(O2,N2)
,

𝜏w,trans =
HO2

wTidal
,

𝜏w,adv =
HO2

wadv
,
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Figure 8. (a) Percent changes in zonal-mean O/O2 ratio averaged over low latitudes from TIE-GCM simulations including CTMT lower boundary tidal forcing
between 100 and 200 km during September under solar minimum (dotted line) and maximum (dashed line) conditions. (b–e) Percent changes in [O] (O/O2)
from TIE-GCM simulations with/without TBCs at low latitudes and between 100 and 200 km during September. Differences computed from simulations under
solar minimum (maximum) conditions are shown in Figures 8b and 8c (Figures 8d and 8e). Percent differences are contoured every ±5%.

Figure 9. Same as Figure 6, except for O2 time constants that extend down to the TIE-GCM lower boundary of 97 km.
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Figure 10. Percent changes in NmF2 between TIE-GCM simulations with/without TBCs at low and middle latitudes
during September under solar minimum (dotted line), medium (solid line), and maximum (dashed line) conditions.

where k1 = 1.6×10−11 T−0.52
1 +5.5×10−11 exp

( −22.85
T1

)
[after Roble et al., 1987], T1 = 1

300

(
2
3

Ti +
1
3

T
)

, and Ti is the
ion temperature. Figure 9 is the same as Figure 6, except for O2 time constants. The lifetime of O2 due to merid-
ional and vertical advective (net tidal) transport ranges from ∼1 to 10 days (∼50 to 100 days) between 97 and
110 km close to the TIE-GCM lower boundary and these remain relatively constant with altitude (magenta,
purple, green, and red lines in Figure 9). Due to the long lifetime of O2 due to net tidal transport, compared
to the tidal period (hours) and the time scales of diffusion and advective transport (∼10 days below 105 km
in Figure 9), the aforementioned Jones et al. [2014b] mechanism is not likely to generate the [O2] changes
illustrated in Figures 7b and 7e. Instead, it appears that advective transport time scales (magenta and purple
lines in Figure 9) are short and comparable to those of eddy and molecular diffusion (blue and cyan lines in
Figure 9), leading us to conclude that it is most likely advective tidal transport that is responsible for increasing
the [O2] in the TIE-GCM at all levels of solar activity. Specifically, this dynamically driven [O2] increase via advec-
tive tidal transport is consistent with the [O] changes shown in Figures 8b and 8d and described in Jones et al.
[2014b] (i.e., more [O2] being forced vertically to be photodissociated in order to replenish the tidal-induced
loss of [O]).

Although the solar cycle variability associated with tidal-induced changes in [NO], and thus NO cooling
described above, can be explained by the solar cycle variability in tidal-induced [O] and [O2] changes, it is
less apparent what is driving the solar cycle variability associated with the tidal-induced [O] and [O2] changes
themselves. These solar cycle variations could be related to the products of tidal (primed) quantities in the [O]
and [O2] continuity equations (i.e., analogous to the last two terms in equation (2) and discussed in Jones et al.
[2014b]), which would involve both in situ and upward propagating tides, the former varying with solar cycle.
However, preliminary analysis of the dynamical term difference fields in the [O] and [O2] continuity equations
do not vary with solar cycle. This supports the findings of Yamazaki and Richmond [2013], which state that the
in situ tides have little impact on the global mass mixing ratio of the major species in the thermosphere. Since
tidal effects on the major species of the thermosphere are qualitatively consistent with increases in eddy dif-
fusion, the individual species mass diverges away from the mean molecular weight more rapidly in altitude
at solar maximum than in solar minimum, partially explaining greater [O2] relative differences at solar min-
imum [see Colegrove et al., 1965; Nguyen and Palo, 2014]. Another explanation for the solar cycle variations
in tidal-induced [O] and [O2] changes could be analogous to the solar cycle variations associated with the
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relative density response to a geomagnetic storm at a fixed altitude; i.e., a higher relative density pertur-
bation due to geomagnetic forcing occurs at solar minimum as compared to solar maximum due to more
density scale height increments being integrated below a given altitude [see Lei et al., 2010, 2011; Prölss, 2011].
We suspect that changes in the density scale heights of O and O2 may only be partially responsible for the
tidal-induced changes in [O2] and [O] depicted in Figures 7 and 8. These different processes briefly outlined
above, and potentially others that produce solar cycle variations in tidal-induced change in [O] and [O2], merit
further investigation.

3.4. Implications for Tidal-Induced Solar Variability in the Ionosphere
A likely consequence of solar cycle variability in the zonal-mean thermal energy budget through tidal-induced
neutral composition changes is solar cycle variability in the ionosphere. Specifically, Jones et al. [2014a] [Siskind
et al., 2014] showed that up to a∼20% decrease in the electron density at the F2 layer pear (NmF2) was driven by
decreases in [O] and increases in [O2] due to the tides at solar medium (minimum) in their TIE-GCM simulations.
Figure 10 shows that there is solar cycle variability not only in the zonal-mean temperatures but also in the
NmF2 driven by the dissipating tides through major neutral constituent changes. Decreases of ∼32%, ∼22%,
and ∼12% in NmF2 arise from percent decreases in [O] (source) and percent increases in [N2] and [O2] (loss) at
solar minimum (dotted line), medium (solid line), and maximum (dashed line), respectively, during September
in the equatorial ionosphere. Larger reductions of electron density during solar minimum as compared to
solar maximum are driven by greater [O] depletions and [O2] enhancements at solar minimum versus that of
solar maximum (see Figures 7 and 8).

4. Summary and Conclusion

The impacts that the vertically propagating tides have on the zonal-mean thermal energy budget and com-
positional structure of the IT system, as well as the underlying physical processes responsible for driving
variability in the two have garnered little attention over the past half a century. Therefore, this paper inves-
tigates the role that atmospheric tides play in driving solar cycle variability of the zonal-mean temperature
structure of the IT. The ways by which the dissipating tides act to change the zonal-mean temperatures of the
IT are evaluated by calculating difference fields in the zonal-mean thermodynamic energy equation forcing
terms and subsequently neutral constituent densities between TIE-GCM simulations with/without obser-
vationally based background and tidal lower boundary conditions. The primary results and conclusions to
emerge from our numerical experiments are as follows:

1. Zonal-mean temperature differences calculated from the TIE-GCM are strongly dependent upon solar
cycle. Maximum (minimum) zonal-mean temperature differences of up to +19 K (−15 K) occur under
solar minimum (maximum) conditions during September in the equatorial IT. The zonal-mean temper-
ature differences in the lower thermosphere can be almost completely explained due to dissipation of
DW1 and SW2 (Figure 1). These tides have their largest effects on the zonal-mean temperature below
200 km, whereas above 200 km temperature differences remain relatively constant with altitude due to the
increased importance of thermal conductivity.

2. Diagnosis of the individual terms in the thermodynamic energy equation reveals that the dissipating tides
act to alter the zonal-mean temperature structure of the IT system through adiabatic heating and cooling,
eddy heat source, and diabatic heating and cooling terms. Specifically, tidal dissipation induces the largest
changes in the eddy heat flux divergence (e.g., −50 to +60 K d−1 in Figures 2c and 2d) at all levels of solar
activity and thus is mainly responsible for altering the zonal-mean temperature distribution in the equa-
torial lower thermosphere. However, the direct heat transport due to the tides does not vary much with
solar activity, whereas the relative importance of the diabatic heating and cooling term is strongly depen-
dent upon solar cycle exhibiting +25 K d−1 values at solar minimum and −25 K d−1 at solar maximum
(Figure 2). Ultimately, these tidal-induced changes in the diabatic heating and cooling terms lead to a 30 K
change between zonal-mean temperature differences at low latitudes under solar minimum and maximum
conditions (Figures 1a–1c).

3. Tidal dissipation alters the diabatic heating and cooling term in the thermodynamic energy equation
through changes in solar radiation absorption and NO cooling in the TIE-GCM. Specifically, the tides
strengthen the natural thermostat of the thermosphere [Mlynczak et al., 2003] or NO 5.3 μm IR cooling by
10 K d−1 and 30 day−1 at solar minimum and maximum, respectively (Figures 3b and 3e). Essentially, con-
stant tidal forcing at the TIE-GCM lower boundary modulates the intrinsic solar cycle behavior of the “natural
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thermostat” of the thermosphere, which results in more (less) tidal-induced cooling at solar maximum (min-
imum). These tidal-induced changes in NO cooling and their associated solar cycle variability are insensitive
to increased solar soft X-rays in the TIE-GCM. To further quantify this NO cooling enhancement due to the
tides, typical zonal-mean NO cooling enhancements as a result of solar cycle range from ∼100 to 200 K d−1

in the TIE-GCM, implying that the tides could act to modulate the NO cooling mechanism by some∼5–30%
depending on solar cycle. Additionally, the vertical extent of the largest NO cooling differences induced by
the tides depicted in Figure 3 can be affected by the in situ driven SW2; i.e., the SW2 forced by IR and UV
radiation in the lower atmosphere combines with the SW2 forced in situ in the thermosphere to produce
solar cycle variability in the vertical extent (and distribution) of NO cooling differences.

4. The solar cycle variations in the major neutral constituents (particularly in [O2]) lead to 120% (40%) increases
in [NO] (Figures 4a and 4b), mainly via the production and loss terms in the zonal-mean [NO] continuity
equation (Figures 6, 7a, and 7d), ultimately resulting in increased NO or diabatic cooling in the zonal-mean
thermosphere. Greater [NO] enhancements occur at solar minimum than at solar maximum due to greater
enhancements (reductions) in [O2] (the O/O2 ratio) in the TIE-GCM (e.g., see Figures 7b, 7e, and 8). Although
[NO] enhancements are greater at solar minimum as compared to solar maximum, NO more efficiently cools
the lower IT at solar maximum when the neutral densities of the thermosphere (especially in NO and O) are
at their largest. In addition to tidal-induced solar cycle variability of [NO], Jones et al. [2014a] showed that
there is seasonal variability associated with [O] and [O2] tidal-induced changes, suggesting that the tidally
driven effects on [NO], and thus the zonal-mean thermospheric energy budget will vary intraannually as
well.

5. Changes of +10% or greater in [O2] in the equatorial lower thermosphere are forced by advective tidal
meridional and vertical transport of [O2] [after Yamazaki and Richmond, 2013] in a way that is in agreement
with [O] depletions in the lower thermosphere. Time constants derived from the zonal-mean [O2] continuity
equation show that the net tidal transport mechanism [after Jones et al., 2014b] is not a primary driver of
[O2] changes in the TIE-GCM at lower thermospheric altitudes.

6. Regardless of solar cycle there is a decrease in NmF2 when tides are included at the TIE-GCM lower boundary
(Figure 10). NmF2 decreases at low and middle latitudes range from −32 to −5% throughout the solar cycle,
which are driven by the dissipating tides through decreases in the plasma production (i.e., [O]) and increases
in the loss of ionospheric plasma (i.e., [O2 and [N2]).

7. TIE-GCM results analyzed herein suggest that tidal modifications to the zonal-mean thermal energy bud-
get and neutral constituents modulate their natural 11 year solar cycle behavior. Therefore, tidal effects on
long-term changes and trends in the mean state of the IT system warrant consideration [cf. Laštovička, 2013;
Emmert, 2015], as changes in the atmospheric tidal spectrum coming from below (e.g., ozone forcing of
SW2) could have noticeable effects on the long-term trends in IT densities and temperatures that depend
on solar cycle. Similar speculations have recently been made by Oliver et al. [2013] with regards to gravity
waves.
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