19 research outputs found

    Pharmacokinetic Analysis of Omomyc Shows Lasting Structural Integrity and Long Terminal Half-Life in Tumor Tissue

    Get PDF
    Omomyc; Mass spectrometry; Protein therapeuticsOmomyc; Espectrometría de masas; Terapéutica de proteínasOmomyc; Espectrometria de masses; Terapèutica de proteïnesMYC is an oncoprotein causally involved in the majority of human cancers and a most wanted target for cancer treatment. Omomyc is the best-characterized MYC dominant negative to date. In the last years, it has been developed into a therapeutic miniprotein for solid tumor treatment and recently reached clinical stage. However, since the in vivo stability of therapeutic proteins, especially within the tumor vicinity, can be affected by proteolytic degradation, the perception of Omomyc as a valid therapeutic agent has been often questioned. In this study, we used a mass spectrometry approach to evaluate the stability of Omomyc in tumor biopsies from murine xenografts following its intravenous administration. Our data strongly support that the integrity of the functional domains of Omomyc (DNA binding and dimerization region) remains preserved in the tumor tissue for at least 72 hours following administration and that the protein shows superior pharmacokinetics in the tumor compartment compared with blood serum.This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 872212 and from the Ministerio de Ciencia e Innovacion under grant no. RTC2019-007067-1

    Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics

    Get PDF
    Nanovesicles; Neuroblastoma; Pediatric cancerNanovesículas; Neuroblastoma; Cáncer pediátricoNanovesícules; Neuroblastoma; Càncer pediàtricMicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.The funding was received by Ministerio de Educación, Cultura y Deporte (Grant no. FPU16/01099), Ministerio de Economía, Industria y Competividad (Grants MAT2016-80820-R, MAT2016-80826-R and SAF2016-75241-R), the Ministry of Science and Innovation (MINECO) of Spain through grant PID2019-105622RB-I00, from Instituto de Salud Carlos III (Grant no. CP16/00006, PI17/00564, PI20/00530, DTS20/00018) (Co-funded by European Regional Development Fund/European Social Fund) “Investing in your future”), from the EuroNanoMed II platform through the NanoVax project, from CIBER-BBN through grant TAG-SMARTLY, Joan Petit Foundation, Asociación Matem Lo Bitxo and Asociación Española Contra el Cáncer (Grant no. LABAE18009SEGU), as well as, Generalitat de Catalunya through the Centres de Recerca de Catalunya (CERCA) programme and grant no. 2017-SGR-918, and from Agency for Management of University and Research Grants (AGAUR) (Grant no 2018LLAV0064 and SIFECAT IU68-010017). Furthermore, ICMAB-CSIC acknowledges support from the MINECO through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496 and CEX2019-000917-S)

    Molecularly determined total tumour load in lymph nodes of stage I–II colon cancer patients correlates with high-risk factors. A multicentre prospective study

    Get PDF
    Stage I–II (pN0) colorectal cancer patients are surgically treated although up to 25 % will eventually die from disease recurrence. Lymph node (LN) status is an independent prognostic factor in colorectal cancer (CRC), and molecular tumour detection in LN of early-stage CRC patients is associated with an increased risk of disease recurrence and poor survival. This prospective multicentre study aimed to determine the relationship between LN molecular tumour burden and conventional high-risk factors in stage I–II colon cancer patients. A total of 1940 LN from 149 pathologically assessed pN0 colon cancer patients were analysed for the amount of tumour cytokeratin 19 (CK19) messenger RNA (mRNA) with the quantitative reverse transcription loop-mediated isothermal amplification molecular assay One-Step Nucleic Acid Amplification. Patient’s total tumour load (TTL) resulted from the sum of all CK19 mRNA tumour copies/μL of each positive LN from the colectomy specimen. A median of 15 LN were procured per case (IQR 12;20). Molecular positivity correlated with high-grade (p < 0.01), mucinous/signet ring type (p = 0.017), male gender (p = 0.02), number of collected LN (p = 0.012) and total LN weight per case (p < 0.01). The TTL was related to pT stage (p = 0.01) and tumour size (p < 0.01) in low-grade tumours. Multivariate logistic regression showed independent correlation of molecular positivity with gender, tumour grade and number of fresh LN [AUC = 0.71 (95 % CI = 0.62–0.79)]. Our results show that lymph node CK19 mRNA detection correlates with classical high-risk factors in stage I–II colon cancer patients. Total tumour load is a quantitative and objective measure that may help to better stage early colon cancer patients.Work supported by the Banc de Tumors-Biobanc Hospital Clinic-IDIBAPS and Xarxa de Bancs de Tumors de Catalunya (XBTC), and by grants from the Fundación Científica de la Asociación Española Contra el Cáncer (GCB13131592CAST), Ministerio de Economía y Competitividad (SAF2014–54,453-R), Agència de Gestió d’Ajuts Universitaris i de Recerca (2014SGR135), and by Sysmex Coorp Spain (Sant Just Desvern, Spain). CIBERehd is funded by the Instituto de Salud Carlos II

    Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria

    Get PDF
    Biofabrication is attracting interest as a means to produce nanostructured functional materials because of its operational versatility and full scalability. Materials based on proteins are especially appealing, as the structure and functionality of proteins can be adapted by genetic engineering. Furthermore, strategies and tools for protein production have been developed and refined steadily for more than 30 years. However, protein conformation and therefore activity might be sensitive to production conditions. Here, we have explored whether the downstream strategy influences the structure and biological activities, in vitro and in vivo, of a self-assembling, CD44-targeted protein-only nanoparticle produced in Escherichia coli. This has been performed through the comparative analysis of particles built from soluble protein species or protein versions obtained by in vitro protein extraction from inclusion bodies, through mild, non-denaturing procedures. These methods have been developed recently as a convenient alternative to the use of toxic chaotropic agents for protein resolubilization from protein aggregates. The results indicate that the resulting material shows substantial differences in its physicochemical properties and its biological performance at the systems level, and that its building blocks are sensitive to the particular protein source

    BET inhibition is an effective approach against KRAS-driven PDAC and NSCLC

    Get PDF
    Effectively treating KRAS-driven tumors remains an unsolved challenge. The inhibition of downstream signaling effectors is a way of overcoming the issue of direct targeting of mutant KRAS, which has shown limited efficacy so far. Bromodomain and Extra-Terminal (BET) protein inhibition has displayed anti-tumor activity in a wide range of cancers, including KRAS-driven malignancies. Here, we preclinically evaluate the effect of BET inhibition making use of a new BET inhibitor, BAY 1238097, against Pancreatic Ductal Adenocarcinoma (PDAC) and Non-Small Cell Lung Cancer (NSCLC) models harboring RAS mutations both in vivo and in vitro. Our results demonstrate that BET inhibition displays significant therapeutic impact in genetic mouse models of KRAS-driven PDAC and NSCLC, reducing both tumor area and tumor grade. The same approach also causes a significant reduction in cell number of a panel of RAS-mutated human cancer cell lines (8 PDAC and 6 NSCLC). In this context, we demonstrate that while BET inhibition by BAY 1238097 decreases MYC expression in some cell lines, at least in PDAC cells its anti-tumorigenic effect is independent of MYC regulation. Together, these studies reinforce the use of BET inhibition and prompt the optimization of more efficient and less toxic BET inhibitors for the treatment of KRAS-driven malignancies, which are in urgent therapeutic need

    Reducing MYC's transcriptional footprint unveils a good prognostic gene signature in melanoma

    Get PDF
    MYC; Omomyc; MelanomaMYC; Omomyc; MelanomaMYC; Omomyc; MelanomaMYC's key role in oncogenesis and tumor progression has long been established for most human cancers. In melanoma, its deregulated activity by amplification of 8q24 chromosome or by upstream signaling coming from activating mutations in the RAS/RAF/MAPK pathway—the most predominantly mutated pathway in this disease—turns MYC into not only a driver but also a facilitator of melanoma progression, with documented effects leading to an aggressive clinical course and resistance to targeted therapy. Here, by making use of Omomyc, the most characterized MYC inhibitor to date that has just successfully completed a phase I clinical trial, we show for the first time that MYC inhibition in melanoma induces remarkable transcriptional modulation, resulting in severely compromised tumor growth and a clear abrogation of metastatic capacity independently of the driver mutation. By reducing MYC's transcriptional footprint in melanoma, Omomyc elicits gene expression profiles remarkably similar to those of patients with good prognosis, underlining the therapeutic potential that such an approach could eventually have in the clinic in this dismal disease.M.F.Z.-F. was supported by the Juan de la Cierva Programme of the Spanish Ministry of Economy and Competitiveness (IJCI-2014-22403) and Fundació La Marató de TV3 (grant 474/C/2019); F.G. was supported by Spanish Ministry of Science and Innovation Contratos Predoctorales de Formación en Investigación en Salud (PFIS; FI20/00274); I.G.-L. was supported by a grant from the University Teacher Training Program (FPU), Ministry of Universities (FPU20/04812); and S.M.-M. was supported by the Generalitat de Catalunya “Contractació de Personal Investigador Novell (FI-DGR)” 2016 fellowship (2016FI_B 00592). This project was funded by grants from the Spanish Ministry of Science and Innovation (Fondo de Inversión en Salud [FIS] PI19/01277, which also supported I.G.-L. and S.M.-M, and Retos-Colaboración 2019 RTC2019-007067-1), La Marató TV3, the Generalitat de Catalunya AGAUR 2017 grant SGR-3193, and the European Research Council (ERC-PoC II/3079/SYST-iMYC [813132]). We thank the rest of the Soucek laboratory for critical reading of the manuscript, and the personnel at Vall d'Hebron Research Institute (VHIR) High Technology Unit. We acknowledge Vall d'Hebron Institute of Oncology and the Cellex Foundation for providing research facilities and equipment

    Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics

    Get PDF
    MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics

    In vivo Antitumor and ametastatic efficacy of a polyacetal-based paclitaxel conjugate for prostate cancer therapy

    Get PDF
    Prostate cancer (PCa), one of the leading causes of cancer-related deaths, currently lacks effective treatment for advanced-stage disease. Paclitaxel (PTX) is a highly active chemotherapeutic drug and the first-line treatment for PCa; however, conventional PTX formulation causes severe hypersensitivity reactions and limits PTX use at high concentrations. In the pursuit of high molecular weight, biodegradable, and pH-responsive polymeric carriers, we conjugated PTX to a polyacetal-based nanocarrier to yield a tert-Ser-PTX polyacetal conjugate. tert-Ser-PTX conjugate provides sustained release of PTX over two weeks in a pH-responsive manner while also obtaining a degree of epimerization of PTX to 7-epi-PTX. Serum proteins stabilize tert-Ser-PTX, with enhanced stability in human serum vs. PBS (pH 7.4). In vitro efficacy assessments in PCa cells demonstrated IC50 values above those for the free form of PTX due to the differential cell trafficking modes; however, in vivo tolerability assays demonstrated that tert-Ser-PTX significantly reduced the systemic toxicities associated with free PTX treatment. tert-Ser-PTX also effectively inhibited primary tumor growth and hematologic, lymphatic, and coelomic dissemination, as confirmed by in vivo and ex vivo bioluminescence imaging and histopathological evaluations in mice carrying orthotopic LNCaP tumors. Overall, our results suggest the application of tert-Ser-PTX as a robust anti-tumor/antimetastatic treatment for PCa

    Guia per a la vacunació a l'escola

    Get PDF
    Vacunació; Escola; RecomanacionsVaccination; School; RecommendationsVacunación; Escuela; RecomendacionesActualment el nombre de vacunes disponibles és molt ampli i això queda reflectit en els canvis, cada vegada més freqüents, del calendari de vacunacions sistemàtiques. Cada dia més, el professional que administra vacunes ha de tenir un coneixement, una informació i una formació més acurats. Aquesta guia ha estat actualitzada amb la voluntat de facilitar la tasca d’aquests professionals i esperem que hi trobin una eina pràctica per al desenvolupament de la seva feina diària
    corecore