198 research outputs found

    A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1 , MFT , CIPK23 and PHYA

    Get PDF
    Environmental signals drive seed dormancy cycling in the soil to synchronise germination with the optimal time of year; a process essential for species fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways. Firstly using mutants in known dormancy-related genes (DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)). Secondly, using further mutants we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised

    Changes in phenological events in response to a global warming scenario reveal greater adaptability of winter annual compared to summer annual Arabidopsis ecotypes

    Get PDF
    Background and Aims The impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals respectively. Methods Using a global warming scenario predicting a 4Ā°C temperature rise from 2011 to circa 2080 we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle. Key Results In a winter life cycle, increasing temperatures advanced flowering time by 10.1 days Ā°C-1 in the winter annual and 4.9 days Ā°C-1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle. Conclusions Seedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual Arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to Anthropogenic Climate Change

    Direct replacement of oral sodium benzoate with glycerol phenylbutyrate in children with urea cycle disorders

    Get PDF
    Long-term management of urea cycle disorders (UCDs) often involves unlicensed oral sodium benzoate (NaBz) which has a high volume and unpleasant taste. A more palatable treatment is licenced and available (glycerol phenylbutyrate [GPB], Ravicti) but guidance on how to transition patients from NaBz is lacking. A retrospective analysis of clinical and biochemical data was performed for eight children who transitioned from treatment with a single ammonia scavenger, NaBz, to GPB at a single metabolic centre; UCDs included arginosuccinic aciduria (ASA) (nĀ =Ā 5), citrullinaemia type 1 (nĀ =Ā 2) and carbamoyl phosphate synthetase I deficiency (CPS1) (nĀ =Ā 1). Patients transitioned either by gradual transition over 1ā€“2 weeks (nĀ =Ā 3) or direct replacement of NaBz with GPB (nĀ =Ā 5). Median initial dose of GPB was 8.5 mL/m2/day based on published product information; doses were revisited subsequently in clinic and titrated individually (range 4.5ā€“11 mL/m2/day). Pre-transition and post-transition mean ammonia levels were 37 Ī¼mol/L (SD 28 Ī¼mol/L) and 29 Ī¼mol/L (SD 22 Ī¼mol/L), respectively (pĀ =Ā 0.09), and mean glutamine levels were 664 Ī¼mol/L (SD 225 Ī¼mol/L) and 598 Ī¼mol/L (SD 185 Ī¼mol/L), respectively (pĀ =Ā 0.24). There were no reductions in levels of branched chain amino acids. No related adverse drug reactions were reported. Patients preferred GPB because of its lower volume and greater palatability. Direct replacement of NaBz with GPB maintained metabolic control and was simple for the health service and patients to manage. A more cautious approach with additional monitoring would be warranted in brittle patients and patients whose ammonia levels are difficult to control

    Urea Cycle Related Amino Acids Measured in Dried Bloodspots Enable Long-Term In Vivo Monitoring and Therapeutic Adjustment

    Get PDF
    BACKGROUND: Dried bloodspots are easy to collect and to transport to assess various metabolites, such as amino acids. Dried bloodspots are routinely used for diagnosis and monitoring of some inherited metabolic diseases. METHODS: Measurement of amino acids from dried blood spots by liquid chromatography-tandem mass spectrometry. RESULTS: We describe a novel rapid method to measure underivatised urea cycle related amino acids. Application of this method enabled accurate monitoring of these amino acids to assess the efficacy of therapies in argininosuccinate lyase deficient mice and monitoring of these metabolites in patients with urea cycle defects. CONCLUSION: Measuring urea cycle related amino acids in urea cycle defects from dried blood spots is a reliable tool in animal research and will be of benefit in the clinic, facilitating optimisation of protein-restricted diet and preventing amino acid deprivation

    Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD

    Get PDF
    Background Respiratory viral infection causes chronic obstructive pulmonary disease (COPD) exacerbations. We previously reported increased bronchial mucosa eosinophil and neutrophil inflammation in patients with COPD experiencing naturally occurring exacerbations. But it is unclear whether virus per se induces bronchial mucosal inflammation, nor whether this relates to exacerbation severity. Objectives We sought to determine the extent and nature of bronchial mucosal inflammation following experimental rhinovirus (RV)-16ā€“induced COPD exacerbations and its relationship to disease severity. Methods Bronchial mucosal inflammatory cell phenotypes were determined at preinfection baseline and following experimental RV infection in 17 Global Initiative for Chronic Obstructive Lung Disease stage II subjects with COPD and as controls 20 smokers and 11 nonsmokers with normal lung function. No subject had a history of asthma/allergic rhinitis: all had negative results for aeroallergen skin prick tests. Results RV infection increased the numbers of bronchial mucosal eosinophils and neutrophils only in COPD and CD8+ T lymphocytes in patients with COPD and nonsmokers. Monocytes/macrophages, CD4+ T lymphocytes, and CD20+ B lymphocytes were increased in all subjects. At baseline, compared with nonsmokers, subjects with COPD and smokers had increased numbers of bronchial mucosal monocytes/macrophages and CD8+ T lymphocytes but fewer numbers of CD4+ T lymphocytes and CD20+ B lymphocytes. The virus-induced inflammatory cells in patients with COPD were positively associated with virus load, illness severity, and reductions in lung function. Conclusions Experimental RV infection induces bronchial mucosal eosinophilia and neutrophilia only in patients with COPD and monocytes/macrophages and lymphocytes in both patients with COPD and control subjects. The virus-induced inflammatory cell phenotypes observed in COPD positively related to virus load and illness severity. Antiviral/anti-inflammatory therapies could attenuate bronchial inflammation and ameliorate virus-induced COPD exacerbations

    Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis

    Get PDF
    Comparative physiological analysis of mutant Arabidopsis seeds under defined environmental conditions was used to analyse the relative contributions of components of peroxisomal beta-oxidation in the control of seed germination potential. The COMATOSE (CTS) and KAT2 loci were shown to play essential roles in regulating germination and establishment potentials, whereas LACS6 and LACS7 loci only influenced establishment following germination. The viability and desiccation tolerance of three different mutant alleles of CTS were shown to be intermediate between that of dormant and non-dormant wild-type seeds. Analysis of ttg-1 cts-1 double mutant seeds demonstrated that the cts lesion did not influence after-ripening capacity. These data demonstrate the importance of peroxisomal beta-oxidation in the control of germination potential, but suggest that breakdown of stored lipid is not an important prerequisite for germination. A function is suggested for CTS following after-ripening within pathways related to the progression of germination prior to radicle emergence

    The MIF antagonist ISO-1 attenuates corticosteroid-insensitive inflammation and airways hyperresponsiveness in an ozone-induced model of COPD

    Full text link
    Copyright Ā© 2016 Russell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with acute and chronic inflammatory disorders and corticosteroid insensitivity. Its expression in the airways of patients with chronic obstructive pulmonary disease (COPD), a relatively steroid insensitive inflammatory disease is unclear, however. Methods. Sputum, bronchoalveolar lavage (BAL) macrophages and serum were obtained from nonsmokers, smokers and COPD patients. To mimic oxidative stress-induced COPD, mice were exposed to ozone for six-weeks and treated with ISO-1, a MIF inhibitor, and/or dexamethasone before each exposure. BAL fluid and lung tissue were collected after the final exposure. Airway hyperresponsiveness (AHR) and lung function were measured using whole body plethysmography. HIF-1Ī± binding to the Mif promoter was determined by Chromatin Immunoprecipitation assays. Results. MIF levels in sputum and BAL macrophages from COPD patients were higher than those from non-smokers, with healthy smokers having intermediate levels. MIF expression correlated with that of HIF-1Ī± in all patients groups and in ozone-exposed mice. BAL cell counts, cytokine mRNA and protein expression in lungs and BAL, including MIF, were elevated in ozone-exposed mice and had increased AHR. Dexamethasone had no effect on these parameters in the mouse but ISO-1 attenuated cell recruitment, cytokine release and AHR. Conclusion MIF and HIF-1Ī± levels are elevated in COPD BAL macrophages and inhibition of MIF function blocks corticosteroid-insensitive lung inflammation and AHR. Inhibition of MIF may provide a novel anti-inflammatory approach in COPD

    Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency)

    Get PDF
    Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of L-{alpha}-aminoadipic semialdehyde/L-{Delta}1-piperideine 6-carboxylate. However, whilst this is a highly treatable disorder, there is general uncertainty about when to consider this diagnosis and how to test for it. This study aimed to evaluate the use of measurement of urine L-{alpha}-aminoadipic semialdehyde/creatinine ratio and mutation analysis of ALDH7A1 (antiquitin) in investigation of patients with suspected or clinically proven pyridoxine-dependent epilepsy and to characterize further the phenotypic spectrum of antiquitin deficiency. Urinary L-{alpha}-aminoadipic semialdehyde concentration was determined by liquid chromatography tandem mass spectrometry. When this was above the normal range, DNA sequencing of the ALDH7A1 gene was performed. Clinicians were asked to complete questionnaires on clinical, biochemical, magnetic resonance imaging and electroencephalography features of patients. The clinical spectrum of antiquitin deficiency extended from ventriculomegaly detected on foetal ultrasound, through abnormal foetal movements and a multisystem neonatal disorder, to the onset of seizures and autistic features after the first year of life. Our relatively large series suggested that clinical diagnosis of pyridoxine dependent epilepsy can be challenging because: (i) there may be some response to antiepileptic drugs; (ii) in infants with multisystem pathology, the response to pyridoxine may not be instant and obvious; and (iii) structural brain abnormalities may co-exist and be considered sufficient cause of epilepsy, whereas the fits may be a consequence of antiquitin deficiency and are then responsive to pyridoxine. These findings support the use of biochemical and DNA tests for antiquitin deficiency and a clinical trial of pyridoxine in infants and children with epilepsy across a broad range of clinical scenarios
    • ā€¦
    corecore