

Original citation:

Footitt, Steven, Ölcer-Footitt, Hülya, Hambidge, Angela J. and Finch-Savage, William E.. (2017) A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant, Cell & Environment . doi: 10.1111/pce.12940

Permanent WRAP URL:

http://wrap.warwick.ac.uk/86222

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

This is the peer reviewed version of the following article: Footitt, S., Ölcer-Footitt, H., Hambidge, A. J., and Finch-Savage, W. E. (2017) A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancyrelated genes DOG1, MFT, CIPK23 and PHYA. Plant, Cell & Environment, doi: 10.1111/pce.12940., which has been published in final form at <u>http://dx.doi.org/10.1111/pce.12940</u>. This article may be used for non-commercial purposes in accordance with <u>Wiley Terms and Conditions for Self-Archiving</u>.

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

1

2

3

4

5

6

7

8

Dormancy cycling with mutants 1
A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its
regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA
Running title: Dormancy cycling with mutants
Steven Footitt ¹ , Hülya Ölcer-Footitt ² , Angela J. Hambidge ¹ , and William E. Finch-Savage ¹ *
¹ School of Life Sciences, Wellesbourne Campus, University of Warwick, Warwickshire, CV35
9EF, UK

- ² Department of Biology, Faculty of Arts and Sciences, Evliya Celebi Campus, Dumlupinar 9
- 10 University, TR-43100 Kütahya, Turkey
- *Corresponding author 11
- William E. Finch-Savage 12
- 13 Tel: +44 (0)24 765 74968
- FAX: +44 (0)24 765 74500 14
- 15 E-mail: bill.finch-savage@warwick.ac.uk

2

17 Abstract

18	Environmental signals drive seed dormancy cycling in the soil to synchronise germination
19	with the optimal time of year; a process essential for species fitness and survival. Previous
20	correlation of transcription profiles in exhumed seeds with annual environmental signals
21	revealed the coordination of dormancy regulating mechanisms with the soil environment.
22	Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility
23	of this simulation was tested in two ways. Firstly using mutants in known dormancy-related
24	genes (DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-
25	INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)). Secondly, using
26	further mutants we test the hypothesis that components of the circadian clock are involved
27	in coordination of the annual seed dormancy cycle. The rate of dormancy induction and
28	relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was
29	reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA
30	dormancy induction was accelerated. Involvement of the clock in dormancy cycling was
31	clear when mutants in the morning and evening loops of the clock were compared.
32	Dormancy induction was faster when the morning loop was compromised and delayed
33	when the evening loop was compromised.
34	

Key words: Arabidopsis, circadian clock, circannual rhythm, DOG1, dormancy cycling,
germination, seed dormancy, thermal time.

3

38 Introduction

39	Seeds are highly efficient sensors and interpreters of the prevailing environment and their
40	environmental history. Seeds first sense the maternal environment to set the depth of
41	primary dormancy at maturity (e.g. temperature) (Kendall et al. 2011; Penfield and
42	Springthorpe, 2012; He et al. 2014; Huang et al. 2014 & 2015; Chen et al. 2015). Seeds that
43	do not germinate immediately upon shedding enter the soil seed bank and respond to the
44	soil environment by continually adjusting depth of dormancy to time the eventual
45	completion of germination (Footitt et al. 2011, 2013, 2014; 2015; Finch-Savage and Footitt,
46	2012, 2017; Penfield and Springthorpe, 2012). When depth of dormancy is low seeds are
47	sensitive to signals that inform of the spatial environment (e.g. light, nitrate and
48	temperature). If these signals are not received to remove the final layer of dormancy then
49	seeds enter secondary dormancy (Finch-Savage and Footitt 2017). In this way seeds
50	determine the time and place of plant establishment to synchronise their life cycle with
51	favourable environments (Finch-Savage and Leubner-Metzger, 2006; Burghardt et al. 2016;
52	Springthorpe and Penfield 2015). Recent correlations of annual gene expression patterns in
53	exhumed seeds with environmental signals in the field provided the first insight into the
54	temporal integration of the molecular regulation of dormancy cycling (Footitt et al. 2011,
55	2013, 2014).

56

However, studying dormancy cycling in the field is a long-term undertaking and ethical and
regulatory reasons can preclude the use of seeds from genetically modified plants to dissect
the role of individual genes; progress in understanding has therefore been slow. To address
this in the work presented we used our field and laboratory observations (Cadman *et al.*

Page 4 of 44

61	2006; Footitt et al. 2011; Huang et al. 2015) to develop a representative, but rapid and
62	simple laboratory simulation of dormancy cycling. It enables a full dormancy cycle to be
63	completed in <i>c</i> . eight weeks. The method was developed using the deeply dormant winter
64	annual ecotype Cvi then applied to the Col-0 and Ler ecotypes to facilitate mutant analyses.
65	Here we explore the utility of this laboratory simulation in two ways.
66	
67	Firstly, we use the simulation to confirm the involvement of genes previously identified in
68	correlative gene expression studies as central to the regulation of seed dormancy cycling
69	(Footitt et al, 2011, 2013). These studies suggest that by influencing the central integrating
70	hormonal balance (Abscisic acid (ABA)/Gibberellins (GA)) DELAY OF GERMINATION 1 (DOG1)
71	and MOTHER OF FLOWERING TIME (MFT) play key roles in the response to temporal signals
72	(e.g. temperature) that regulate dormancy cycling (Finch-Savage and Footitt, 2017). This is
73	linked to temporal changes in the expression of PHYTOCHROME A (PHYA) and CBL-
74	INTERACTING PROTEIN KINASE 23 (CIPK23) that alter sensitivity to signals indicating
75	suitability for germination completion (spatial signals: light and nitrate respectively). Once
76	sensitised, seeds respond to these signals through the ABA/GA balance to bring about the
77	completion of germination when conditions are optimal (Finch-Savage and Footitt, 2017).
78	We confirm the involvement of these genes in ABA sensitivity and dormancy cycling using
79	mutant lines (<i>dog1-2, mft2, cipk23</i> and <i>phyA</i>). In the field, dormancy induction and relief
80	during cycling were shown to progress in thermal time (Footitt et al. 2011) and we use this
81	approach to analyse data in the present work. Thermal time is quantified as the amount by
82	which temperature exceeds a minimum temperature or threshold for the process in
83	question. When this value is summed over days to give degree days (°C days) thermal time

84	can be used to measure progress towards the completion of that process (Finch-Savage and
85	Luebner-Metzger, 2006).

86

87	Secondly, we use the simulation to test the previously unstudied hypothesis that
88	components of the circadian clock may be involved in coordination of the annual seed
89	dormancy cycle. The regulation of daily circadian rhythms has been extensively studied in
90	plants (e.g. Salome and McClung 2005; Seung et al. 2012; Seo and Mas 2015; and Atamian
91	and Harmer 2016). In a 24 hour cycle, interlocking morning and evening feedback loops
92	control the period and phases of the circadian clock. The morning loop in Arabidopsis
93	contains the MYB-related transcription factors LATE ELONGATED HYPOCOTYL (LHY) and
94	CIRCADIAN CLOCK ASSOCIATED1 (CCA1) whose increased expression represses the evening
95	loop gene TIMING OF CAB EXPRESSION (TOC1). LHY/CCA1 also induce the sequential
96	expression of the PSEUDO RESPONSE REGULATOR genes PRR9, PRR7, and PRR5; which
97	feedback during the day to progressively repress LHY/CCA1 and therefore relieve repression
98	of TOC1. The latter protein, which induces LHY/CCA1 expression (as reviewed in Hsu and
99	Harmer, 2014) is targeted for degradation by GIGANTEA (GI) in conjunction with ZEITLUPE
100	(ZTL). GI then appears to be repressed by EARLY FLOWERING 3 (ELF3) a member of the
101	evening complex (Mishra and Panigrahi, 2015). The evening complex is formed by the
102	proteins ELF3, ELF4 and LUX ARRYTHMO (LUX) and this represses the expression of the day-
103	phased clock gene <i>PRR9</i> (Hsu and Harmer, 2014).
104	
105	Some of these genes are known to influence seed dormancy. For example, LHY and CCA1

106 mutants were more sensitive to dormancy relieving low temperature stratification and the

107 *GI* mutant less sensitive (Penfield and Hall, 2009). They also alter the hormone balance in

108	seeds. For example, GI and TOC1 mutants influence ABA and GA sensitivity and the
109	expression of ABA and GA related genes (Penfield and Hall, 2009). The clock was also a key
110	regulator of physiological activity when dormancy of imbibed Euphorbia esula seeds was
111	relieved by alternating temperature in the dark (Foley et al. 2010). This indicates that the
112	clock could respond to temperature signals in the dark conditions experienced in the soil
113	seedbank; furthermore temperature alternations of 4°C are known to entrain the clock
114	(Salome and McClung, 2005). However, in seeds it is the rhythm of the seasonal
115	temperature cycle that provides a temporal signal indicating time of year (Probert, 2000). In
116	other tissues, components of the circadian clock can respond to seasonal changes in day
117	length and associated alternation of light and temperature to coordinate tree bud dormancy
118	with the time of year (Cooke et al. 2012). A similar role for the clock in seeds is largely
119	unexplored. To address this we use a targeted selection of mutant lines of clock genes to
120	determine their contribution to the dormancy cycle and associated ABA sensitivity. We
121	complement this by analysing the annual transcription profiles of these genes during
122	dormancy cycling in the field.
123	
124	Materials and Methods
125	
126	Seed production: Seeds of the Arabidopsis Cape Verde Island (Cvi) and Burren (Bur)

127 ecotypes were produced in a heated glasshouse with supplemental lighting in 2007 (Cvi) and

128 2008 (Bur) and were harvested, processed and then stored at -80°C as described elsewhere

129 (Footitt et al. 2011, 2013). Seeds of the Arabidopsis mutants' toc1-101 (Kikis et al. 2005),

130 *lhy20 cca1-1* (Yakir et al. 2009), *lhy20 cca1-1 toc1-2* (Yamashino et al. 2008), prr5-11 prr7-11

131 *prr9-10* (Nakamichi *et al.* 2005), *dog1-2* (Nakabayashi *et al.* 2012), *mft2* (Xi *et al.* 2010),

Plant, Cell & Environment

Dormancy cycling with mutants

132	cipk23 (N503652) and phyA (N6223) are in the Col-0 (N1092) genetic background. While the
133	overexpressing lines LHY-OX and CCA1-OX are in the Ler and Col-0 backgrounds respectively
134	(Green et al. 2002). All lines and their wild types were produced in the same growth cabinet
135	(16°/16°C 16h L/8 h D). Following harvesting and processing seeds were stored at -80°C (See
136	supplementary methods for seed production conditions).
137	
138	Dormancy cycling in the laboratory
139	The annual variation in soil temperature and water potential are seen to impact the annual
140	seed dormancy cycle in the field (Footitt et al. 2011). These observations were used to
141	develop a protocol for dormancy cycling in the laboratory. Dormancy/germination
142	experimental treatments and procedures used surface sterilised seeds and were all carried
143	out in the dark under a green safe light unless otherwise stated.
144	
145	Impact of water potential on dormancy status in Cvi: Decreasing soil water potential was
146	associated with low temperature induction of dormancy in Cvi in the field (Footitt et al.
147	2011). Consequently its role was tested in the laboratory. Dormant seeds were surface
148	sterilised in 2.5% dilution of domestic bleach for 5 minutes and washed three times in
149	water. Seeds were then placed (3 x 40 seeds) into boxes (124 x 88 x 22 mm) (Stewart
150	Plastics Ltd, UK). Each box contained 25 ml of solution set at a range of water potentials (0, -
151	0.4, -0.8, and 1.2 MPa) using PEG 8000. This PEG solution volume represents a solution
152	volume/paper weight ratio of 3.55 that minimises the concentrating effect of filter paper on
153	the solution (Hardegree and Emmerich 1990). This liquid reservoir was accommodated
154	beneath the seeds as follows. In the base of each box was placed a piece of glass-drying mat
155	(Nisbits Ltd, UK). The drying mat was an open lattice 3 mm deep to create space for the PEG

k	r	1	
1	5	ć	
ł	Ľ	2	,

solution. On top of this was placed nylon mesh (1 mm mesh size) (Plastok, UK) to support
the single sheet of Whatman 3MM chromatography paper (Camlab, UK) that is then placed
on top. Strips of nylon mesh (125 μ m mesh size, 45% open mesh) (Plastok, UK) were then
laid on the paper and each seed replicate was placed on one of those individual strips (for a
visual representation see Fig. S1). Boxes were then sealed inside freezer bags to minimize
evaporation and wrapped in two layers of aluminium foil to exclude light and incubated at
5°C for up to 14 days. Germination tests were carried out on these seeds after increasing
intervals at 5°C. The nylon strips holding the seeds were transferred to new boxes
containing 2 sheets of chromatography paper and 8 ml of 50 or 250 μM Gibberellin $_{4+7}$ in
citrate/phosphate buffer (pH 5.0) or a buffer control in the light at 20°C and germination
recorded over 28 days (Footitt et al. 2011). Gibberellin $_{4\text{+}7}$ was dissolved in 100 μl 0.1 M KOH
before preparing stock solution.
Seeds incubated on water (0 MPa) were also transferred at intervals to fresh water, or 10
mM KNO $_3$ and incubated at 20°C/light for 28 days to record germination. In all treatments
dark germinated seeds were recorded on transfer to the light. Germination was recorded as
protrusion of the radicle through the seed coat and micropylar endosperm.
Dormancy cycling in Cvi: The constrasting impact of winter and summer temperature on the
annual dormancy cycle of Cvi was simulated using lower and higher constant temperatures
to simulate dormancy cycling in the laboratory. Dormant seeds were plated (3 x 40 seeds)
onto nylon mesh strips in boxes containing a -1.2 MPa PEG 8000 solution as above and
incubated at 5°C for up to 21 days. At this point seeds were transferred to boxes containing
2 sheets of chromatography paper and 8 ml water and incubated at 25°C for 35 days. At

each transfer point dark germinated seeds were counted. At intervals, boxes were removed

Plant, Cell & Environment

Dormancy cycling with mutants

179	and dormancy tested by transferring seeds to boxes in the light as above containing 50 or
180	250 μ M Gibberellin 4+7 or a buffer control as above.

181	Dormancy cycling in Col-0 wild type and mutants: Using the laboratory dormancy cycling
182	simulation, mutants in the Col-0 genetic background were used to test the contribution of
183	selected genes to dormancy cycling. Seeds were plated (3 x 40 seeds) into boxes containing
184	a -1.0 MPa PEG 8000 solution as above. A series of experiments testing a wide range of
185	treatment temperatures and durations were then performed to evaluate the role of
186	temperature in the induction and relief of dormancy. For the impact of cold conditioning on
187	high temperature dormancy induction seeds were incubated at $5^{\circ}C/ -1$ MPa for up to 28
188	days then transferred to germination plates containing 2 sheets of chromatography paper
189	and 8 ml of water and incubated at 20 (clock mutants only), 25 and 30°C for up to 14 days at
190	which point plates were transferred to 5°C for up to 29 days. At intervals during each
191	incubation period boxes were removed for germination testing at 25°C/light for 14 days.
192	Loss of dormancy in the presence of nitrate in Col-0 and $cipk23$ seeds subjected to 5°C/ -1
193	MPa followed by 25°C was also tested by transferring seeds to 10 mM KNO3 at 25°C/light
194	for 14 days. Germination tests were carried out at 25°C as the Col-0 wild type retains
195	greater thermodormancy at this temperature compared to 20°C. Seeds on PEG 8000
196	solution were transferred to water prior to germination testing in the light. Dark
197	germination was recorded at each transfer point and prior to germination testing.
198	ABA sensitivity: As changing ABA sensitivty has in integral role in the dormancy continuum
199	the sensitivity of mutants was determined. Seeds were plated on to nylon mesh in boxes
200	containing water as above. They were cold stratified at 5°C/dark for three days then
201	transferred to boxes containing 10 - 250 nM (±)-ABA (Sigma, UK) in citrate/phosphate buffer

10

- 202 (pH 5.0) and incubated in the light at 25°C. ABA was dissolved in 100 μl 0.1 M KOH before
- 203 preparing stock solution.

204	Dormancy cycling in the field and gene expression analysis: As seed dormancy cycling
205	displays an annual rhythm in response to seasonal soil temperature patterns we determined
206	the transcriptional profile of seven clock genes in seeds recovered over twelve months from
207	field soil. Experiments on dormancy cycling in the field were performed as described
208	previously (Footitt et al. 2011 and 2013). Seeds were recovered from the soil in the morning
209	of the day of harvest. QPCR of circadian clock gene expression was performed using the
210	touchdown PCR thermal cycle: one cycle at 95°C for 10 min followed by 50 cycles at 95 °C
211	for 30s, 70°C (decreasing by 0.2°C/cycle to a target temperature of 67°C) for 30s, and 72 C
212	for 30s. All other details regarding QPCR procedures and analysis were described previously
213	(Footitt <i>et al.</i> 2015). Primer sequences are given in Table S2.
214	
215	Results

216

217 Dormancy cycling in Cvi under laboratory conditions:

218 Cvi seeds in field soil are induced into deeper primary dormancy by low temperatures in

- 219 winter, dormancy then declines to low levels in response to higher temperatures in
- 220 spring/summer; deeper dormancy (secondary dormancy) is then re-induced by
- autumn/winter low temperatures (Footitt et al. 2011). A series of experiments were
- 222 conducted to reproduce this behaviour in the laboratory. Primary dormant seeds on water
- did not germinate in the dark and germination was less than 5% at 20°C/light (Fig. 1(a)).
- 224 Periods of pre-exposure to low temperature in the dark up to 14 days had a limited effect

225	on germination on water (Fig. 1a) and the buffer control (Fig. 1(b)). Germination on nitrate
226	marginally increased from 5-17 % in the first 4 days, then declined on further exposure.
227	However, full germination was induced by imbibition on GA (250 μM GA_{4+7}), which then
228	progressively declined on exposure to low temperature indicating an increasing depth of
229	dormancy not evident on water, or the buffer control (Fig. 1b). Depth of dormancy
230	increased more rapidly on exposure to low temperature when seeds were incubated in
231	negative water potentials (down to -1.2 MPa) consistent with the observations of Auge et
232	<i>al.</i> (2015).
233	
234	A second lot of seeds from the same harvest were exposed to low temperature (5°C/dark)
235	for 21 days with and without water stress at -1.2 MPA and then transfered to water at
236	25°C/dark to simulate a full dormancy cycle (Fig. 2). This second seed lot had been stored at
237	-20°C, which resulted in a lower dormancy level. With these seeds, germination on the
238	buffer control increased to < 40% after 6 days of low temperature indicating this proportion
239	of the population had the lowest level of primary dormancy. In this portion, dormany could
240	then be relieved by light, with the remainder not yet light sensitive. With continued low
241	temperature exposure deeper dormancy was induced in the population as a whole.
242	Sensitivity to GA ₄₊₇ declined (i.e. dormancy deepened) so that no seeds germinated even at
243	250 μM GA_{4+7} after exposure to low temperature for 21 days. Depth of dormancy then
244	declined progressively in the subsequent high temperature phase of the cycle. This began
245	after 2 days on GA and then later in the control after 40 days.

246

247 Dormancy cycling in Col-0 and Ler:

12

248	Col-0 and Ler seeds were produced by maturing them at the relatively low temperature of
249	16°C. This lower temperature increased the level of primary dormancy and prevented dark
250	germination at low temperture. Subsequent imbibition of these seeds at low temperature
251	relieved primary dormancy and high temperature then induced secondary dormancy (Fig.
252	3). Dormancy was initially similar in Col-0 and Ler, but the exposure to low temperature
253	revealed Ler was the more dormant ecotype (Fig 3(a) & (c)).
254	
255	To simulate a dormancy cycle in the laboratory, Col-0 and Ler seeds were first subjected to
256	low temperature (5°C/dark) at -1.0 MPa for up to 28 days. On day 28, seeds were
257	transferred to water at 25 °C/dark (Fig. 3; results at 25 and 30 °C are shown in Fig. S2, also
258	20, 25 and 30 °C in Fig S3, & S4), which resulted in the rapid induction of secondary
259	dormancy in all seeds. This was followed by a second low temperature phase to relieve
260	secondary dormancy. At all stages dormancy level was determined by germination following
261	transfer to 25°C/light. At this temperature these ecotypes exhibit high temperature
262	thermodormancy. Seeds from lines with mutated dormancy regulating genes (<i>dog1-2, mft2</i> ,
263	cipk23 and phyA) and mutated clock genes and over expressing lines were also subjected to
264	this simulation.
265	

266 To test if incubation of Col-0 seeds beyond 28 days at low temperature (5°C/dark) at -1.0

MPa would induce secondary dormancy seeds were incubated for up to 42 days. Although primary dormancy was relieved and germination was 94% after 21 days it only declined to 84% after 28 days and 83% at 42 days indicating a slow induction of secondary dormancy that may increase if the treatment was extended further(see Discussion).

272	Dormancy cycling in mutants of dormancy-related genes: Primary dormancy in the mutants
273	mft2, cipk23 and phyA was similar to Col-0, but dog1-2 was non-dormant (Day 0; Fig. 3(a)).
274	The response of these mutants to the dormancy cycle simulation differed greatly from Col-0.
275	The initial low temperature phase relieved primary dormancy and then induced secondary
276	dormancy in <i>cipk23</i> and <i>phyA</i> after 21 days. On transfer to higher temperature (25°C),
277	secondary dormancy induction was complete after only four days in <i>cipk23</i> and <i>phyA</i> , but
278	seven days in Col-0 (Fig. 3(a)). In contrast, <i>dog1-2</i> and <i>mft2</i> secondary dormancy induction
279	was slower. Maximum induction was after 14 days in <i>dog1-2</i> (germination 48%) and seven
280	days in <i>mft2</i> (germination 33%). On transfer to the second low temperature phase,
281	secondary dormancy was broken after two days in <i>dog1-2</i> and <i>mft2;</i> and after four days in
282	Col-0, <i>cipk23</i> (83%) and <i>phyA</i> (65%). Secondary dormancy was then re-induced in Col-0,
283	<i>cipk23</i> and <i>phyA</i> , but not in <i>dog1-2</i> and <i>mft2</i> . The rate of change was greater when 30°C
284	was used to induce secondary dormancy, but the relative performance of the lines was very
285	similar (Fig. S2). As CIPK23 is involved in the regulation of nitrate transport and signalling the
286	nitrate sensitivity of Col-0 and <i>cipk23</i> was tested when secondary dormancy was induced at
287	25°C for 14 days. Germination was 85% and 77% respectively in the presence of 10mM
288	nitrate at 25°C/light.
289	

To determine the role of the initial cold treatment seeds were exposed directly to high temperature (25 or 30°C) in the dark. Secondary dormancy was not induced in *dog1-2* but was in the wildtype and the other dormancy related mutants (Fig. S5).

293

Selection of lines to test whether clock genes influence seed dormancy cycling: We
subjected seeds from lines with the following clock mutations: *toc1-101, lhy20 cca1-1, lhy20*

14

296	cca1-1 toc1-2 and prr5-11 prr7-11 prr9-10 and the overexpressing lines LHY-OX and CCA1-
297	OX to the dormancy cycling simulation. This combination of mutants allowed us to
298	investigate whether altering the balance between the morning and evening loops of the
299	clock would alter the dormancy cycling response under the relatively long-term, but
300	changing, constant temperatures of the simulation in the dark (i.e. in the absence of an
301	imposed external daily rhythm).
302	
303	Dormancy cycling in clock mutant lines: Primary dormancy of all lines was initially relieved
304	during the low temperature phase, but secondary dormancy induction started between
305	days 21 and 28 except in prr5-11 prr7-11 prr9-10; and induction increased in the order toc1-
306	101, Ihy20 cca1-1, and Ihy20 cca1-1 toc1-2 (Fig. 3(b)). On transfer to higher temperature
307	(25°C) at 28 days, secondary dormancy was completely induced after a further seven days
308	and was slowest in prr5-11 prr7-11 prr9-10. On transfer back to low temperature secondary
309	dormancy was rapidly relieved and then re-induced in all lines (Fig. 3(b)). The impact of the
310	high temperature phase on rate of dormancy induction and its subsequent relief differed
311	with temperature (20, 25, & 30°C, Fig. S3)
312	
313	The overexpressing lines behaved differently from their respective wild type comparisons. In
314	the CCA1-OX (Col-0 background) overexpressing line secondary dormancy was more rapidly

induced during the first low temperature phase than in Col-0 and was complete after only

four days on transfer to 25°C compared to 7 in Col-0 (Fig. 3(c)). Whereas, the LHY-OX (Ler

317 background) overexpressing line was more dormant than Ler and the first low temperature

318 phase did not relieve dormancy. Dormancy increased on transfer to 25°C (Fig. 3(c)). In the

319 second low temperature phase, secondary dormancy was relieved, but rapidly re-induced

Plant, Cell & Environment

Dormancy cycling with mutants

320	only in CCA1-OX. The response to the second low temperature phase was dependent on the
321	previous temperature. For example, in contrast to that shown on transfer from 25°C (Fig.
322	3(b) & S4(b)), on transfer from 20°C secondary dormancy was not relieved by low
323	temperature in CCA1-OX (Fig. S4(a)). Furthermore, on transfer from 30°C to low
324	temperature secondary dormancy was relieved, but only re-induced with prolonged
325	incubation (Fig. S4(c)).

326

327 **Response of clock genes to temporal signals in the field:** To further understand the 328 response of clock mutants we analysed the transcription profiles of selected clock genes in 329 seeds of the deeply dormant winter annual ecotype Cvi and the shallow dormant summer 330 annual ecotype Bur during dormancy cycling in the field (Fig. 4). Bur is a summer annual 331 ecotype whose dormancy cycling behaviour is highly characterised (Footitt et al. 2013; 332 2015). As such it is used here as a model for the summer annual behaviour of the ecotype Col-0 the genetic backgound of the clock mutants used in the laboratory simulation. In both 333 334 Cvi and Bur ecotypes there were clear annual transcript profiles, however the profiles of the 335 morning genes CCA1 and LHY differed between ecotypes (Fig. 4 (b) & (f)). In Cvi, the 336 transcription profiles of LHY and TOC1 where similar; but opposite to the soil temperature 337 profile. Whereas in Bur, CCA1 and TOC1 transcript profiles are similar, but have little 338 relationship with the temperature profile (see Table S1). In Cvi and Bur, GI, PRR7 and ELF3 339 transcription profiles are the same and inversely tracked soil temperature and in the case of 340 Cvi also tracked dormancy (Fig. 4(c), (d), (g) & (h)). Of the evening complex genes examined, 341 LUX transcription had no obvious pattern in contrast to ELF3 (Fig. 4(d) & (h)). 342

Significant correlations occurred between the transcription-profiles of the clock and

Dormancy cycling with mutants

343

344	dormancy related genes and the annual soil temperature cycle in both ecotypes (Table S1).
345	In particular there were strong correlations between the evening genes <i>ELF3</i> and <i>GI</i> and
346	chromatin remodelling genes involved in gene activation/repression such as HUB1 and
347	OTLD1 and silencing (KYP/ROS1) (Footitt et al. 2015) (Table S1).
348	
349	Dormancy induction and thermal time: In the field, dormancy induction and relief during
350	cycling were shown to progress in thermal time (Footitt et al. 2011). We therefore used this
351	approach to analyse data in the laboratory simulation during dormancy induction at 20, 25
352	and 30°C (Fig. 5 & S6). Induction of secondary dormancy in Col-0, <i>mft2</i> and the clock
353	mutants followed an exponential decay response with thermal time. In the clock mutants
354	the thermal time required to induce secondary dormancy in 50% of the population
355	decreased in the order prr5 11 prr7-11 prr9-10 (153 °C days)> Col-0 (105 °C days)> toc1-101
356	(82 °C days)> <i>lhy20 cca1-1</i> (60 °C days)> <i>lhy20 cca1-1 toc1-2</i> (54 °C days). In <i>dog1-2</i>
357	induction of secondary dormancy had a linear response (see Fig. S6 for regression
358	equations).
359	
360	ABA sensitivity of Col-0, dormancy and clock mutants: Due to the role of ABA in the
361	induction of dormancy we investigated ABA sensitivity of both groups of mutants. Dormancy
362	mutants showed large differences in ABA sensitivity. With the exception of <i>dog1-2</i> final
363	germination was similar in all lines (Fig. 6(a)). However, the speed of germination
364	represented by the time to 50% germination (T50) (a measure of germination velocity)
365	revealed that ABA sensitivity increased in the order <i>dog1-2 > mft2 > Col-0 > phyA > cipk23</i>
366	(Fig. 6(b)) similar to that seen for the induction of secondary dormancy in thermal time (Fig.

Plant, Cell & Environment

Dormancy cycling with mutants

367	5(a) & S6(a)). The response of dormancy mutants to 100 nM ABA (Fig. 6(c)) illustrates
368	further their different ABA sensitivities. ABA sensitivity in <i>dog1-2</i> was greatly reduced in
369	agreement with that reported for <i>dog1-1</i> (Ler background) (Bentsink <i>et al.</i> 2006). The onset
370	of low ABA sensitivity was delayed in <i>mft2</i> potentially indicating delayed ABA catabolism as
371	an uplift in germination occured at the same time in all lines (Fig. 6(c)).
372	
373	Clock mutants also exhibit different ABA sensitivities (Fig 6(d)). The time to 50% germination
374	(T50) revealed that ABA sensitivity increased in the order prr5 11 prr7-11 prr9-10 > toc1-101
375	> Col-0 > Ihy20 cca1-1 > Ihy20 cca1-1 toc1-2 (Fig. 6(e)) again similar to secondary dormancy
376	induction in thermal time (Fig. 5(b)). The response to 50 nM ABA indicates these differences
377	are constant during germination (Fig. 6(f)). The overexpressing lines have similar ABA
378	sensitivity to there parental wild types (Fig. S7).
	, , , , , , , , , , , , , , , , , , , ,
379	
379 380	Germination in the dark: Germination is reported following transfer to the light including
379 380 381	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if
379 380 381 382	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if temperature manipulation replaced dormancy relief by light. There was no dark germination
 379 380 381 382 383 	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if temperature manipulation replaced dormancy relief by light. There was no dark germination in the first low temperature phase. In the high temperature phase dark germination in the
 379 380 381 382 383 384 	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if temperature manipulation replaced dormancy relief by light. There was no dark germination in the first low temperature phase. In the high temperature phase dark germination in the dormancy mutants peaked at 25% in <i>dog1-2</i> and 32% in <i>mft2</i> at 25°C; and 9% and 2% at
 379 380 381 382 383 384 385 	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if temperature manipulation replaced dormancy relief by light. There was no dark germination in the first low temperature phase. In the high temperature phase dark germination in the dormancy mutants peaked at 25% in <i>dog1-2</i> and 32% in <i>mft2</i> at 25°C; and 9% and 2% at 30°C (Fig. S8). In the clock mutants and over expressers, dark germination was 5% or less at
 379 380 381 382 383 384 385 386 	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if temperature manipulation replaced dormancy relief by light. There was no dark germination in the first low temperature phase. In the high temperature phase dark germination in the dormancy mutants peaked at 25% in <i>dog1-2</i> and 32% in <i>mft2</i> at 25°C; and 9% and 2% at 30°C (Fig. S8). In the clock mutants and over expressers, dark germination was 5% or less at 20 and 25°C (Fig. S9) with none at 30°C. In Col-0, maximum dark germination at high
 379 380 381 382 383 384 385 386 387 	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if temperature manipulation replaced dormancy relief by light. There was no dark germination in the first low temperature phase. In the high temperature phase dark germination in the dormancy mutants peaked at 25% in <i>dog1-2</i> and 32% in <i>mft2</i> at 25°C; and 9% and 2% at 30°C (Fig. S8). In the clock mutants and over expressers, dark germination was 5% or less at 20 and 25°C (Fig. S9) with none at 30°C. In Col-0, maximum dark germination at high temperature was 11% (Fig. S8 & S9). In the second low temperature phase, dark
 379 380 381 382 383 384 385 386 387 388 	Germination in the dark: Germination is reported following transfer to the light including the limited dark germination. Dark germination was also recorded to determine if temperature manipulation replaced dormancy relief by light. There was no dark germination in the first low temperature phase. In the high temperature phase dark germination in the dormancy mutants peaked at 25% in <i>dog1-2</i> and 32% in <i>mft2</i> at 25°C; and 9% and 2% at 30°C (Fig. S8). In the clock mutants and over expressers, dark germination was 5% or less at 20 and 25°C (Fig. S9) with none at 30°C. In Col-0, maximum dark germination at high temperature was 11% (Fig. S8 & S9). In the second low temperature phase, dark germination was 2%.

390 Discussion

1	0
	×.
_	<u> </u>

391	Gene expression patterns during annual dormancy cycling in the field can differ from those
392	anticipated from more static laboratory dormancy studies (Footitt et al, 2011, 2013; Finch-
393	Savage and Footitt, 2017). We therefore established a robust laboratory simulation of
394	dormancy cycling in different Arabidopsis ecotypes by manipulating temperature and water
395	potential. The central role of temperature in dormancy cycling is well known (Probert 2000);
396	and the role of low water potential on the induction of secondary dormancy in the dark was
397	originally shown by Khan and Karssen (1980). Furthermore, primary dormancy status upon
398	shedding is known to influence subsequent cycling, for example, it can impact on the
399	induction of secondary dormancy by low water potential in Col-0 (Auge et al., 2015). In the
400	experiments presented, ecotypic differences in the relief and induction of dormancy by the
401	temperatures used in the simulation were consistent with those previously shown for Bur,
402	Col-0, Ler, and Cvi (Cone and Spruit, 1983; Huang et al. 2015, Springthorpe and Penfield
403	2012, 2015). These differences presumably arose during adaptation to their specific climates
404	from a common underlying species response. This adaptation occurs in the initial depth of
405	primary dormancy and the subsequent balance of induction and relief so that cycling
406	behaviour may differ within and between ecotypes if the environment changes.
407	
408	Initial depth of dormancy is determined by both genetics and environmental exposure pre-
409	and post-shedding (Finch-Savage and Footitt, 2017). The effect of the latter is illustrated

410 here in data from seeds of the winter annual ecotype Cvi from the same harvest, but with

411 different depths of dormancy resulting from post-harvest conditions. Seeds with greater

- 412 depth of dormancy (Fig. 1) did not become light sensitive upon exposure to low
- 413 temperature, but became more dormant. Whereas, a proportion of seeds in a less dormant

414 seed lot (Fig. 2) became light sensitive before the whole seed population subsequently

Plant, Cell & Environment

Dormancy cycling with mutants

415	became more dormant on continued exposure. Cycling behaviour therefore differed
416	depending on the environmentally determined initial depth of dormancy. In both seed lots
417	dormancy in Cvi was then relieved by exposure to higher temperatures (Footitt et al. 2011;
418	Huang et al. 2015). This is apparently in direct contrast to the results with the summer
419	annual ecotypes Bur, Col-0 and Ler in which increasing temperature accelerated the
420	induction of secondary dormancy (Figure 3; Cone and Spruit, 1983; Huang et al. 2015,
421	Springthorpe and Penfield, 2015). However, Col-0 can behave as both a winter and summer
422	annual in the field (Springthorpe and Penfield, 2015) suggesting secondary dormancy may
423	also be relieved by high temperature as seen in Cvi depending on the environment before
424	and after shedding. Thus in Col-0, further induction of secondary dormancy by low
425	temperature may be required before a change to high temperature results in relief.
426	However, this intriguing aspect of dormancy cycling in Col-0 is yet to be demonstrated.
427	
428	The above results raise the question of how dormancy cycling is driven by temperature and
429	time (thermal time) to alter the balance between induction and relief of dormancy as part of
430	a dormancy continuum. In this continuum, as primary dormancy in the dispersed seed is
431	relieved, in response to the prevailing environmental conditions (predominantly
432	temperature), the same conditions will start to induce secondary dormancy if the
433	environmental signals required to remove the final layer of dormancy are not received. This
434	behaviour is consistent with the hypothesis that temperature impacts the rate of dormancy
435	induction and relief independently, but importantly that these processes may occur
436	simultaneously (Totterdell and Roberts, 1979; Battla et al. 2009). These opposing processes
437	are largely governed by the environmental sensitivity of the ABA/GA hormone balance
438	(Finch-Savage and Leuber-Metzger, 20016; Finch-Savage and Footitt, 2017). Initial primary

	Dormancy cycling with mutants 20
439	dormancy level determines the temperature sensitivity of both induction and relief via
440	changes in this balance. The hypothesis implies that the terms primary and secondary
441	dormancy are only descriptive of sequences in the cycle with no physiological relevance as
442	dormancy is a continuum, and only the level changes.
443	
444	The protocol presented could be used to test this hypothesis and further develop our
445	understanding of dormancy cycling by evaluating responses of different ecotypes to
446	temperature and water potential. The ecotypes used in the present work included Col-0 as
447	the common genetic background for 1,000's of mutant lines (<u>http://arabidopsis.info/</u>) to
448	facilitate genetic dissection of dormancy cycling. We discuss below how the protocol also
449	has great potential as an investigative tool in advancing our understanding of the role of
450	genes in dormancy regulation.
451	
452	Regulation of dormancy cycling.
453	How ABA and GA -signalling pathways are co-ordinated during dormancy cycling by
454	temperature and water potential is not fully understood (Finch-Savage and Footitt, 2017). It
455	was argued previously (Footitt et al. 2013) that changing temporal signals linked to the
456	transcription of DOG1, MFT, PHYA and CIPK23 drives regulation of dormancy cycling. DOG1
457	and MFT expression contributes to thermal time sensing linked to changes in CIPK23 and
458	PHYA expression that result in altered sensitivity to spatial signals (nitrate and light
459	respectively) indicating suitability for germination. The data presented for mutants of these
460	genes subjected to the laboratory simulation of dormancy cycling (Fig. 3) supports the
461	correlative observations made in the field. Thermal time analysis showed that dormancy

462 induction in the absence of DOG1 (*dog1-2*) was linear with thermal time and exponential in

Plant, Cell & Environment

Dormancy cycling with mutants

463	its presence (Fig. 5). This adds to the contention that DOG1 is part of a thermal mechanism
464	sensing an annual seasonal pattern (circannual rhythm) and may amplify thermal signals by
465	increasing ABA sensitivity. Mutants in CIPK23 and PHYA show an increased induction of
466	secondary dormancy. Both PHYA and CIPK23 also influence hormone signalling consistent
467	with the importance of the dynamic ABA/GA balance determining dormancy levels in
468	response to environmental signals (Finch-Savage and Footitt, 2017).

469

470 **DOG1** and MFT: During seed development *DOG1* is absolutely required for the induction of 471 dormancy (Dekkers et al. 2016). However, in dog1-1 (Ler background) low dark germination 472 was seen in fresh seeds that could be removed by low temperature indicating a low level of 473 primary dormancy was present at maturity (Bentsink *et al.* 2006). In the dormancy 474 simulation, high temperature alone did not induce secondary dormancy in *dog1-2* as it had 475 high levels of dark germination followed by full germination on transfer to light (Fig. S5). 476 However, cold preconditioning at -1 MPa induced a low level of secondary dormancy at the 477 end of the initial cold phase. Light was increasingly unable to remove the final layer of 478 dormancy in Col-0 but not dog1-2 (Fig. 2(a) days 21 to 28). This small loss of sensitivity to 479 light indicates that in the Col-0 genetic background secondary dormancy induction was 480 starting to dominate its relief. On transfer to the higher temperature this level of secondary 481 dormancy was sufficient to prevent dark germination in *dog1-2* as well as in Col-0 while 482 dormancy induction increased to the point where seeds were no longer light sensitive (Fig. 483 3). On the basis that any environmental signal that widens the conditions required for 484 germination is in effect altering dormancy (Finch-Savage and Footitt, 2012) we conclude 485 that the induction of a light requirement and the decreasing sensitivity to light with 486 increasing thermal time is evidence for the induction of secondary dormancy in *dog1-2*. This

22

487 indicates that these conditions allow other factors to impose secondary dormancy in the 488 absence of DOG1. One potential candidate is MFT. 489 490 Induction of secondary dormancy in thermal time was slower in *dog1-2* than in *mft2* 491 indicating the primacy of DOG1 over MFT during dormancy induction. Further research is 492 required to confirm a role for MFT in thermal sensing. The greatly reduced induction of 493 dormancy in *doq1-2* is consistent with DOG1 amplifying thermal signals via increased 494 sensitivity to ABA. The dramatically lower ABA sensitivity of *dog1-2* reported here supports 495 this (Fig. 6(a-c)). 496 497 The loss of ABA sensitivity in *mft2* shows MFT contributes positively to ABA signalling (Fig. 498 6). This is via the oxylipin, 12-oxo-phytodienoic acid (OPDA), which acts through MFT to 499 induce ABA biosynthesis and sensitivity (Dave et al. 2016). Then MFT and ABA via a feedback 500 loop enhance OPDA levels further contributing to DOG1 germination repression (Dave et al. 501 2016) explaining the ABA hypersensitive germination of MFT overexpressing lines (Hu et al. 502 2016). The delayed response to ABA compared to *dog1-2* may reflect declining ABA levels 503 when the OPDA pathway is blocked. In contrast, fully after-ripened *mft2* seeds are ABA 504 hypersensitive (Xi et al. 2010). This may reflect a changing temporal sensing role for MFT 505 dependent on ecotype and the seasonal onset of the dormancy cycle as reflected in altered 506 timing of *MFT* transcription in the field (Footitt *et al.* 2013, 2014). This role for *MFT* in 507 shallow dormancy when DOG1 levels are low is discussed elsewhere (Finch-Savage and 508 Footitt, 2017).

Plant, Cell & Environment

Dormancy cycling with mutants

510	During the final low temperature phase secondary dormancy is broken faster in <i>dog1-2</i> and
511	mft2, than in the wild type. Low temperature treatment then re-induced secondary
512	dormancy in the wild type but not in these mutants showing that dormancy cycling at low
513	temperature is compromised.
514	
515	PHYA and CIPK23: Unlike <i>mft2</i> and <i>dog1-2</i> secondary dormancy was induced in <i>phyA and</i>
516	cipk23 by low temperature, which then accelerated on transfer to higher temperatures (Fig
517	3(a) & S2). This induction of secondary dormancy at high temperature, its relief and re-
518	induction in the second low temperature phase is consistent with increased ABA sensitivity
519	compared to Col-0. This is supported by the ABA hypersensitivity of <i>cipk23</i> (Fig. 5(a-c)). The
520	limited ABA response of <i>phyA</i> reflects the increased contribution of other negative
521	regulators of germination potential in this mutant (Ibarra et al. 2013).
522	

523 PHYA: PHYA is responsible for the Very Low Fluence Response whereby the final layer of 524 dormancy is removed by brief exposure to light during soil disturbance (Battla and Benech-525 Arnold, 2014). The increased sensitivity of phyA seeds to temperature and water stress is 526 consistent with enhanced ABA sensitivity (Fig 3a and Fig 6(a-c)). Transcriptome comparisons 527 between wildtype and phyA seeds support this with 11% of the expressed transcriptome 528 significantly regulated by PHYA (Ibarra et al. 2013). Of those significantly up regulated by 529 PHYA, 7% are transcription factors linked with auxin and GA responses; and ABA catabolism. 530 While down regulated genes contain representatives of the ABA signalling pathways and 531 DELLA genes that relieve repression of GA signalling (Ibarra et al. 2013). So in phyA seeds the balance of the ABA/GA signalling pathways favours ABA amplifying the response to 532 533 dormancy inducing temporal signals.

24

5	3	4
-	-	-

535	CIPK23: This protein forms a calcium sensing complex with CBL1 or CBL9 (CALCINEURIN B-
536	LIKE PROTEIN), which is involved in iron, nitrate and potassium transport and sensing (Leran
537	et al. 2015; Manik et al. 2015; Tian et al. 2016). Its role in regulating nitrate transport and
538	signalling by the NITRATE TRANSPORTER1.1 (NRT1.1) transceptor (duel nutrient
539	transport/signalling function) and the crucial role this plays in the regulation of ABA levels in
540	seeds is well characterised (reviewed in Finch-Savage and Footitt, 2017).
541	
542	The ABA hypersensitivity of <i>cipk23</i> seeds (Fig 6(a-c)) indicates ABA signalling is enhanced in
543	the absence of CIPK23. In the field, low dormancy is coincident with increased nitrate
544	sensing, which is preceded by enhanced NRT1.1 expression and reduced CIPK23 expression.
545	The subsequent onset of secondary dormancy induction appears to reduce nitrate signalling
546	below threshold levels both by reducing the amount of NRT1.1 and its phosphorylation via
547	CIPK23-CBL1/9 (reviewed in Finch-Savage and Footitt, 2017; Footitt <i>et al.</i> 2011; 2013, 2014).
548	Here Col-0 and <i>cipk23</i> lose light but not nitrate sensitivity during induction of secondary
549	dormancy suggesting loss of nitrate sensitivity is related to NRT1.1 protein levels and the
550	action of factors such as DOG1 that regulate deep dormancy (reviewed in Finch-Savage and
551	Footitt, 2017). CIPK23-CBL complexes also have other functions, for example as nutrient
552	sensors to monitor mineral homeostasis in general (Tian et al. 2016). Further work is
553	therefore needed to fully understand the role of CIPK23 in dormancy regulation.
554	
555	Dormancy regulation and clock genes:

556 The annual seasonal rhythm of soil temperature (Fig. 6a and b) was correlated with

transcriptional responses of the dormancy related genes discussed above (see Table S1).

558	During seasonal bud dormancy regulation in trees, perception of seasonal temperature
559	signals involves components of the circadian clock (Cooke et al. 2012). We tested if this
560	could also be occurring in seeds by analysis of clock mutants in the laboratory simulation
561	and by measuring clock gene expression over an annual cycle in the field. The results
562	obtained were consistent with the balance between the evening and morning phases of the
563	clock contributing to the interpretation of temperature signals (thermal time) that
564	determine cycles of dormancy induction and relief.
565	
566	Clock mutants in the laboratory simulation: In this series of laboratory simulations
567	successive relatively long-term incubations at constant temperatures in the dark show the
568	clock has an impact on dormancy status without an imposed external daily rhythm (Fig. 3,
569	S2, S3, & S4). In the parental wild type (Col-0) secondary dormancy was induced on transfer
570	to high temperature and increased further as temperature was raised (20 > 25 > 30°C). Lines
571	with mutations in the morning genes LHY and CCA1 (Ihy20 cca1-1 and Ihy20 cca1-1 toc1-2)
572	had the highest ABA sensitivity and the most rapid induction of secondary dormancy.
573	Whereas, the triple mutant prr5 11 prr7-11 prr9-10 had the lowest ABA sensitivity and
574	slowest induction (Fig. 6 (d-f)). This disruption of the morning loop by mutations in LHY and
575	CCA1 would reduce repression of the evening loop genes TOC1, Gi and the evening complex
576	genes LUX, ELF3 and ELF4 (Pokhiloko et al. 2013). The prr5 11 prr7-11 prr9-10 mutant would
577	reduce repression of LHY and CCA1. Therefore, this result indicates a critical balance
578	between the morning and evening signalling components of the clock influences the
579	induction of dormancy. It further implies that in the absence of a fully functioning morning
580	loop repression of TOC1, Gi and the evening complex genes is incomplete. This is consistent
581	with observations of delayed bud burst (loss of dormancy) in Populus LHY mutants (Ibanez

26

582	et al. 2010). These data are also consistent with clock gene transcription recorded during
583	the annual soil temperature cycle in the field (Fig. 4) and are discussed below. This field data
584	indicates the annual seasonal cycle is analogous to an extended diurnal cycle with low
585	winter temperatures representing the evening phase, and summer temperatures the
586	morning phase (circannual dormancy rhythm). Thermal time analysis (Fig. 5) shows that
587	dormancy cycling responds to the strength of the inductive thermal time signal generated
588	by the clock.
589	
590	Annual clock gene expression in the field: We followed gene expression in the contrasting
591	ecotypes Bur (summer annual) and Cvi (winter annual).The transcript profiles of evening
592	genes increased with falling temperature and therefore in general were negatively
593	correlated to the annual soil temperature cycle in both ecotypes (Table S1). Surprisingly, the
594	morning genes LHY (in Cvi) and CCA1 (in Bur) have the same transcript profiles as TOC1.
595	While only LHY transcription in Bur correlates positively with temperature. This contrasts
596	the general situation in the clock where the transcript profile of <i>TOC1</i> is in the opposite
597	phase to both LHY and CCA1 (Salome and McClung, 2005; Gould et al. 2006). However, it is
598	consistent with high transcription of TOC1 and LHY in Chestnut internodes during winter

when the clock becomes arrhythmic (Ibanez *et al.* 2008). Notably *LHY* (in Cvi) and *CCA1* (in

Bur) transcription do not return to the opposite phase of *TOC1* in the warm summer

601 months. It is also notable that in Bur *TOC1* transcription also increases with summer

temperature and at that point is similar to both *LHY* and *CCA1*. This suggests that adaptation

of dormancy cycling to the environment may involve allelic variation in clock genes as seen

in Drosophila (Yamada and Yamamoto, 2011).

606	Components of the clock will alter the central integrating ABA/GA balance controling
607	dormancy cycling. TOC1 and the clock are involved in the gating of ABA responses (Seung et
608	al. 2012). TOC1 is induced by ABA and interacts with genes involved in ABA signalling
609	responses (Seung et al. 2012). In addition it interacts with the positive regulator of
610	dormancy ABA INSENSITIVE3 (ABI3) (Kurup et al. 2000). ABI3 mutants also exhibit altered
611	circadian rhythms (Pearce, 2003). The consequence of increased TOC1 transcription
612	therefore appears to be an upregulation in ABA signalling. Gibberrelin biosynthesis is
613	repressed by the evening loop with increased expression of the GA biosynthesis gene
614	GA200X2 found in toc1; and increased levels of bioactive Gibberrelins and GA200X2 found
615	in <i>elf3</i> (Atamian and Harmer, 2016). This again indicates evening loop involvement in
616	dormancy cycling.
616 617	dormancy cycling.
616 617 618	dormancy cycling. Dormancy and ABA levels initially increase together, but a point is reached were dormancy
616 617 618 619	dormancy cycling. Dormancy and ABA levels initially increase together, but a point is reached were dormancy increases are ascribed to increasing ABA sensitivity via DOG1 (Footitt <i>et al.</i> 2011).
 616 617 618 619 620 	dormancy cycling. Dormancy and ABA levels initially increase together, but a point is reached were dormancy increases are ascribed to increasing ABA sensitivity via DOG1 (Footitt <i>et al.</i> 2011). Interestingly circadian rhythm micro array data from Col-0 seedlings (Edwards and Millar
 616 617 618 619 620 621 	dormancy cycling. Dormancy and ABA levels initially increase together, but a point is reached were dormancy increases are ascribed to increasing ABA sensitivity via DOG1 (Footitt <i>et al.</i> 2011). Interestingly circadian rhythm micro array data from Col-0 seedlings (Edwards and Millar 2007) shows rhythmic <i>DOG1</i> transcription (See: <u>http://bar.utoronto.ca/efp/cgi-</u>
 616 617 618 619 620 621 622 	dormancy cycling. Dormancy and ABA levels initially increase together, but a point is reached were dormancy increases are ascribed to increasing ABA sensitivity via DOG1 (Footitt <i>et al.</i> 2011). Interestingly circadian rhythm micro array data from Col-0 seedlings (Edwards and Millar 2007) shows rhythmic <i>DOG1</i> transcription (See: <u>http://bar.utoronto.ca/efp/cgi-</u> <u>bin/efpWeb.cgi?dataSource=Light_Series</u>) (Fig. S10). In contrast, morning gene transcription
 616 617 618 619 620 621 622 623 	dormancy cycling. Dormancy and ABA levels initially increase together, but a point is reached were dormancy increases are ascribed to increasing ABA sensitivity via DOG1 (Footitt <i>et al.</i> 2011). Interestingly circadian rhythm micro array data from Col-0 seedlings (Edwards and Millar 2007) shows rhythmic <i>DOG1</i> transcription (See: <u>http://bar.utoronto.ca/efp/cgi-</u> <u>bin/efpWeb.cgi?dataSource=Light_Series</u>) (Fig. S10). In contrast, morning gene transcription is more positively correlated with genes up-regulated in the spatial sensing phase of the
 616 617 618 619 620 621 622 623 624 	dormancy cycling. Dormancy and ABA levels initially increase together, but a point is reached were dormancy increases are ascribed to increasing ABA sensitivity via DOG1 (Footitt <i>et al.</i> 2011). Interestingly circadian rhythm micro array data from Col-0 seedlings (Edwards and Millar 2007) shows rhythmic <i>DOG1</i> transcription (See: <u>http://bar.utoronto.ca/efp/cgi-</u> <u>bin/efpWeb.cgi?dataSource=Light Series</u>) (Fig. S10). In contrast, morning gene transcription is more positively correlated with genes up-regulated in the spatial sensing phase of the dormancy cycle (Table S1).

626 **Circannual dormancy rhythm:**

Annual cycling of the depth of dormancy is well documented (Baskin and Baskin, 1998) and

628 understanding of how this is regulated by a range of dormancy mechanisms in response to

629 environmental signals is developing (Finch-Savage and Footitt, 2017). These mechanisms

28

630	operate via a central integrating ABA/GA balance to time germination completion in the
631	optimum season and habitat. Here we confirm the key involvement of DOG1, MFT, CIPK23
632	and PHYA in regulating the depth of dormancy. Furthermore we show based on mutant
633	analyses and transcript profiles that the balance between the evening and morning phases
634	of the clock also reflects this circannual dormancy rhythm. Based on the thermal time and
635	ABA sensitivity data, dormancy cycling appears to respond to the strength of the inductive
636	thermal time signal generated by the clock. Further directed research is required to test
637	these hypotheses and provide detail of the clocks involvement. Nevertheless, circannual
638	rhythms for germination timing are seen in seeds of the desert annual Mesembryanthemum
639	nodiflorum and in cysts of the marine dinaflagellate Alexandrium in constant conditions over
640	several years (Gutterman and Gender 2005; Matrai et al. 2015) and may be part of a bet
641	hedging strategy. How a circannual clock contributes to and maintains annual rhythms over
642	several years is unclear.
643	Acknowledgements: This work was funded by the Biotechnology and Biological Sciences
644	Research Council-UK [Grant number BB/I022201/1 awarded to W.E.F-S. and S.F]. H O-F
645	thanks Dumlupinar University for sabbatical leave. We thank Dr Wim Soppe (Max Planck
646	Institute) and Dr Hao Yu (National University of Singapore) respectively for the dog1-2 and
647	mft-2 lines; and Dr Steven Penfield (John Innes Centre) for the circadian clock lines and

648 discussions on the clock and dormancy.

Author's Contributions: S.F and W.E.F-S. designed the research. H. O-F performed Cvi
experiments. S.F and A.J.H. performed all other experiments. All authors analysed data. S.F
and W.E.F-S wrote the manuscript.

652 **References**:

- 653 Atamian H.S. & Harmer S.L. (2016) Circadian regulation of hormone signaling and plant
- 654 physiology. *Plant Molecular Biology* **91**, 691–702.
- 655 Auge G.A., Blair L.K., Burghardt L.T., Coughlan J., Edwards B., Leverett L.D. & Donohue K.
- 656 (2015) Secondary dormancy dynamics depends on primary dormancy status in
- 657 Arabidopsis thaliana. *Seed Science Research* **25**, 230-246.
- Baskin C.C. & Baskin J.M. (1998) Seeds: Ecology, biogeography, and evolution of dormancy
- and germination. San Diego, Academic Press.
- 660 Batlla, D., Grundy, A., Dent, K.C., Clay, H.A. & Finch-Savage, W.E. (2009) A quantitative
- 661 analysis of temperature-dependent dormancy changes in *Polygonum aviculare*
- 662 seeds.*Weed Research* **49**, 428-438.
- 663 Batlla D. & Benech-Arnold R.L. (2014) Weed seed germination and the light environment:
- Implications for weed management. *Weed Biology and Management* **14,** 77–87.
- 665 Bentsink L., Jowett J., Hanhart C.J. & Koornneef M. (2006) Cloning of DOG1, a quantitative
- trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National
- 667 *Academy of Sciences, USA* **103,** 17042-17047.
- 668 Burghardt L.T., Edwards B.R. & Donohue K. (2016) Multiple paths to similar germination
- behavior in *Arabidopsis thaliana*. *New Phytologist* **209**, 1301-1312.
- 670 Cadman C.S.C., Toorop P.E., Hilhorst H.W.M. & Finch-Savage W.E. (2006) Gene expression
- 671 profiles of *Arabidopsis* Cvi seeds during dormancy cycling indicate a common underlying
- dormancy control mechanism. *Plant Journal* **46**, 805-822.

- 673 Chen M., MacGregor D.R., Dave A., Florance H., Moore K., Paszkiewicz K., ..., Penfield S.
- 674 (2014) Maternal temperature history activates Flowering Locus T in fruits to control
- 675 progeny dormancy according to time of year. *Proceedings of the National Academy of*
- 676 *Sciences USA* **111**, 18787-18792.
- 677 Cone J.W., & Spruit C.J.P. (1983) Imbibition conditions and seed dormancy of Arabidopsis
- 678 *thaliana. Physiologia Plantarum* 59:416-420.
- 679 Cooke J.E.K., Eriksson M.E. & Junttila O. (2012) The dynamic nature of bud dormancy in
- trees: environmental control and molecular mechanisms *Plant, Cell and Environment* **35**,

681 **1707–1728**.

- 682 Dave A., Vaistij F.E., Gilday A.D., Penfield S.D. & Graham I.A. (2016) Regulation of
- 683 *Arabidopsis thaliana* seed dormancy and germination by 12-oxo-phytodienoic acid.
- 684 Journal of Experimental Botany 67: 2277-2284.
- 685 Dekkers B.J.W., He H., Hanson J., Willems L.A., Jamar D.C., Cueff G., ..., Bentsink L. (2016)
- 686 The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5
- 687 (ABI5) expression and genetically interacts with ABI3 during *Arabidopsis* seed
- 688 development. *Plant Journal* **85,** 451-465.
- 689 Edwards K.D. & Millar A.J. (2007) Analysis of circadian leaf movement rhythms in
- 690 Arabidopsis thaliana. In Circadian Rhythms: Methods and Protocols (ed E. Rosato)
- 691 Methods in Molecualr Biology 362, pp 103-113. Humana Press, Totowa, New Jersey.
- 692 Finch-Savage W.E. & Leubner-Metzger G. (2006) Seed dormancy and the control of
- 693 germination. *New Phytologist* **171**, 501-523.

694	Finch-Savage W.E.	& Footitt S. (2012) To	germinate or not to	germinate:	a question of
-----	-------------------	------------------------	---------------------	------------	---------------

- dormancy relief not germination stimulation. *Seed Science Research* **22**, 243-248.
- 696 Finch-Savage W.E. & Footitt S. (2017) Seed dormancy cycling and the regulation of
- 697 dormancy mechanisms to time germination in variable field environments. *Journal of*
- 698 *Experimental Botany* (doi: 10.1093/jxb/erw477).
- 699 Foley M.E., Anderson J.V., Chao W.S., Doğramacı M. & Horvath D.P. (2010) Initial changes in
- the transcriptome of *Euphorbia esula* seeds induced to germinate with a combination of
- constant and diurnal alternating temperatures. *Plant Molecular Biology* **73**, 131-142.
- Footitt S., Douterelo-Soler I., Clay H. & Finch-Savage W.E. (2011) Dormancy cycling in
- 703 *Arabidopsis* seeds is controlled by seasonally distinct hormone-signaling pathways.

704 *Proceedings of the National Academy of Sciences, USA* **108**, 20236-20241.

- Footitt S., Huang Z., Clay H.A., Mead A. & Finch-Savage W.E. (2013) Temperature, light and
- nitrate sensing coordinate *Arabidopsis* seed dormancy cycling, resulting in winter and
- summer annual phenotypes. *Plant Journal* **74**, 1003-1015.
- 708 Footitt S., Clay H.A., Dent K. & Finch-Savage W.E. (2014) Environment sensing in spring-
- dispersed seeds of a winter annual *Arabidopsis* influences the regulation of dormancy to
- align germination potential with seasonal changes. *New Phytologist* **202**, 929-939.
- 711 Footitt S., Müller K., Kermode A.R. & Finch-Savage W.E. (2015) Seed dormancy cycling in
- 712 Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal
- environmental signals. *Plant Journal* **81,** 413-425.

32

- Gould P.D., Locke J.C., Larue C., Southern M.M., Davis S.J., Hanano S., ..., Hall A. (2006) The
- 715 molecular basis of temperature compensation in the *Arabidopsis* circadian clock. *Plant*

716 *Cell* **18**, 1177-1187.

- 717 Green R.M., Tingay S., Wang Z-Y. & Tobin E.M. (2002) Circadian rhythms confer a higher
- 718 level of fitness to Arabidopsis plants. *Plant Physiology* **129**, 576-584.
- 719 Gutterman Y. & Gendler T. (2005) Annual rhythm of germination of seeds of
- 720 Mesembryanthemum nodiflorum 32 years after collection. Seed Science Research 15,

721 249-253.

722 Hardegree S.P. & Emmerich W.E. (1990) Effect of polyethylene glycol exclusion on the water

potential of solution-saturated filter paper. *Plant Physiology* **92**, 462-466.

He H., de Souza Vidigal D., Snoek L.B., Schnabel S., Nijveen H., Hilhorst H., Bentsink L. (2014)

725 Interaction between parental environment and genotype affects plant and seed

performance in *Arabidopsis. Journal of Experimental Botany* **65**, 6603-6615.

- 727 Hsu P.Y. & Harmer S.L. (2014) Wheels within wheels: the plant circadian system. Trends in
- 728 *Plant Science* **19**, 240-249.
- 729 Hu Y., Gao Y.R., Wei W., Zhang K. & Feng J.Y. (2016) Strawberry MOTHER OF FT AND TFL1
- regulates seed germination and post-germination growth through integrating GA and
- ABA signaling in Arabidopsis. Plant Cell, Tissue and Organ Culture doi:10. 1007/ s11240-
- 732 016-1002-9

Dormancy	cycling	with	mutants
----------	---------	------	---------

733	Huang Z., Footitt S. & Finch-Savage W.E. (2014) The effect of temperature on reproduction
734	in the summer and winter annual Arabidopsis thaliana ecotypes Bur and Cvi. Annals of
735	Botany 113, 921-929.
736	Huang Z., Ölcer-Footitt H., Footitt S. & Finch-Savage W.E. (2015) Seed dormancy is a
737	dynamic state: variable responses to pre-and post-shedding environmental signals in
/ 3/	
738	seeds of contrasting Arabidopsis ecotypes. Seed Science Research 25, 159-169.
739	Ibañez C., Ramos A., Acebo P., Contreras A., Casado R., Allona I. & Aragoncillo C. (2008)
740	Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS
741	One 3, e3567.
742	Ibáñez C., Kozarewa I., Johansson M., Ögren E., Rohde A. & Eriksson M.E. (2010) Circadian
743	clock components regulate entry and affect exit of seasonal dormancy as well as winter
744	hardiness in Populus trees. Plant physiology 153, 1823-1833.
745	Ibarra S.E., Augo G., Sánchoz P.A. & Potto I.E. (2012) Transcriptional programs related to
745	ibarra S.E., Auge G., Sanchez K.A. & Botto J.F. (2015) Hanschptional programs related to
746	phytochrome A function in Arabidopsis seed germination. Molecular Plant 6 , 1261-1273.
747	Kendall S.L., Hellwege A., Marriot P., Whalley C., Graham IA. & Penfield S. (2011) Induction
748	of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and
749	hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23,
750	2568-2580.
751	Khan A.A. & Karssen C.M. (1980) Induction of secondary dormancy in <i>Chenopodium honus</i> -
, , , ,	and a second second of secondary domainey in cheropodium bonds
752	henricus L. seeds by osmotic and high temperature treatments and its prevention by light

and growth regulators. *Plant Physiology* **66**, 175-181.

	Dormancy cycling with mutants 34
755	Kikis E.A., Khanna R. & Quail P.H. (2005) ELF4 is a phytochrome-regulated component of a
756	negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant
757	Journal 44, 300-313.
758	Kurup S., Jones H. & Holdsworth M. (2000) Interactions of the developmental regulator ABI3
759	with proteins identified from developing Arabidopsis seeds. Plant Journal 21, 143–155
760	Léran S., Edel K.H., Pervent M., Hashimoto K., Corratgé-Faillie C., Offenborn J.N.,, Lacombe
761	B. (2015) Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase
762	inactivated by the stress hormone abscisic acid. <i>Science Signalling</i> 8 , ra43.
763	Manik S.M.N., Shi S., Mao J., Dong L., Su Y., Wang Q. & Liu H. (2015) The Calcium Sensor
764	CBL-CIPK Is Involved in Plant's Response to Abiotic Stresses. International Journal of
765	Genomics Article ID 493191, doi: 10.1155/2015/493191
766	Matrai P., Thompson B., & Keller M. (2005) Circannual excystment of resting cysts of
767	Alexandrium spp. from eastern Gulf of Maine populations. Deep Sea Research Part II:
768	Topical Studies in Oceanography 52, 2560-2568.

- 769 Mishra P. & Panigrahi K.C. (2015) GIGANTEA-an emerging story. Frontiers in Plant Science 6:
- 770 8 doi: 10.3389/fpls.2015.00008
- Nakabayashi K., Bartsch M., Xiang Y., Miatton E., Pellengahr S., Yano R., Seo M. & Soppe W. 771
- 772 (2012) The time required for dormancy release in Arabidopsis is determined by DELAY OF
- 773 GERMINATION1 protein levels in freshly harvested seeds. *Plant Cell* 24, 2826-2838.
- 774 Nakamichi N., Kusano M., Fukushima A., Kita M., Ito S., Yamashino T., ..., Mizuno T. (2009)
- Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple 775

776	mutant reveals a role for the circadian clock in cold stress response. Plant and Cell
777	Physiology. 50, 447-62.
778	Pearce A.R. (2003) Investigation of the Interactions between AB13 (ABA Insensitive 3) and
779	TOC1 (timing of CAB Expression 1) in Arabidopsis (Doctoral dissertation, University of
780	Bristol).
781	Penfield S. & Hall A. (2009) A role for multiple circadian clock genes in the response to
782	signals that break seed dormancy in Arabidopsis. The Plant Cell 21, 1722-1732.
783	Penfield S. & Springthorpe V. (2012) Understanding chilling responses in Arabidopsis seeds
704	and their contribution to life bictory. Dhilocophical Transactions of the Dayal Society
784	and their contribution to me history. Philosophical Transactions of the Royal Society
785	London B Biological Sciences 367, 291-297.
786	Pokhilko A., Mas P. & Millar A.J. (2013) Modelling the widespread effects of TOC1 signalling
787	on the plant circadian clock and its outputs. BMC Systems Biology 7, 23.
788	Probert R.J. (2000) The role of temperature in the regulation of seed dormancy and
789	germination. Seeds: The ecology of regeneration in plant communities, (ed M. Fenner) pp.
790	261-292, CABI, Wallingford.
791	Salome P.A. & McClung C.R. (2005) What makes the Arabidopsis clock tick on time? A review
792	on entrainment. Plant, Cell & Environment 28, 21-38.
793	Seo P.J. & Mas P. (2015) STRESSing the role of the plant circadian clock. <i>Trends in Plant</i>
794	Science 20, 230-237.
795	Seung D., Risopatron J.P., Jones B.J. & Marc J. (2012) Circadian clock-dependent gating in
796	ABA signalling networks. <i>Protoplasma</i> 249, 445-457.

- 797 Springthorpe V. & Penfield S. (2015) Flowering time and seed dormancy control use external
- coincidence to generate life history strategy. *eLife* **4**, e05557.
- Tian Q., Zhang X., Yang A., Wang T. & Zhang W.H. (2016) CIPK23 is involved in iron
- 800 acquisition of *Arabidopsis* by affecting ferric chelate reductase activity. *Plant Science* 246,
- 801 70-79.
- 802 Totterdell S. & Roberts E.H. (1979) Effects of low temperatures on the loss of innate
- 803 dormancy and the development of induced dormancy in seeds of *Rumex obtusifolius* L.
- and *Rumex crispus* L. *Plant, Cell & Environment* **2**,131-137.
- 805 Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. (2009) The sequential action of
- miR156 and miR172 regulates developmental timing in *Arabidopsis*. *Cell* **138**, 750-759.
- Xi W.Y., Liu C., Hou X.L. & Yu H. (2010) MOTHER OF FT AND TFL1 Regulates Seed
- 808 Germination through a Negative Feedback Loop Modulating ABA Signaling in *Arabidopsis*.
- 809 *Plant Cell* **22,** 1733-1748.
- 810 Yamada H. & Yamamoto M.T. (2011) Association between circadian clock genes and
- 811 diapause incidence in Drosophila triauraria. PLoS One **6**, e27493
- Yamashino T., Ito S., Niwa Y., Kunihiro A., Nakamichi N. & Mizuno T. (2008) Involvement of
- 813 Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene
- 814 expression in the presence of environmental time cues. *Plant and Cell Physiology* 49,
- 815 1839-1850.

	Dormancy cycling with mutants	37
816	Yakir E., Hilman D., Kron I., Hassidim M., Melamed-Book N. & Green R.M. (2009)	
817	Posttranslational regulation of CIRCADIAN CLOCK ASSOCIATED1 in the circadian oscilla	itor
818	of Arabidopsis. Plant physiology 150, 844-857.	
819		
820	Supporting information	
821		
822	Text S1. Materials and methods	
823		
824	Table S1. Correlation table	
825		
826	Table S2. Primers	
827		
828	Figure S1. Box layout for incubation of seeds at reduced water potential.	
829		
830	Figure S2. Simulated dormancy cycling in dormancy related mutants at 25°C and 30°C.	
831		
832	Figure S3. Simulated dormancy cycling in clock mutants at 20°C, 25°C and 30°C.	
833		
834	Figure S4. Simulated dormancy cycling in CCA1 and LHY overexpressing lines at 20°C, 25	ΰ°C
835	and 30°C.	
836		
837	Figure S5. Response of dormancy related mutants when placed directly in high	
838	temperature without cold conditioning at low water potential.	

Dormancy cycling with mutants

839	
840	Figure S6. Thermal time analysis of dormancy induction at high temperature following low
841	temperature conditioning of the dormancy mutants' <i>dog1-2</i> and <i>mft2</i> and clock mutants.
842	
843	Figure S7. ABA sensitivity of Col-0 and Ler wild types and CCA1 and LHY overexpressing
844	lines.
845	
846	Figure S8. Dark germination of Col-0, and the dormancy mutants <i>dog1-2</i> and <i>mft2</i> .
847	
848	Figure S9. Dark germination of Col-0, clock mutants and CCA1 and LHY overexpressing
849	lines.
850	
851	Figure S10. <i>DOG1</i> transcript level in Col-0 seedlings entrained to a light/dark cycle.

Figure 1. Induction of secondary dormancy in Cvi in response to cold stratification and decreasing water potential. Primary dormant Cvi seeds were incubated at 5°C/dark on water or a range of water potentials from -0.4 to -1.2 MPa. At increasing periods of time dormancy status was determined by measuring germination following transfer of seeds to (a) water or 10 mM KNO3, or (b) a buffer control or 250 μ M GA4+7 buffered at pH 5.0 at 20°C/light for 28 days. Data are mean ± SE (n = 3). Absence of error bars indicates SE is smaller than the symbol.

80x110mm (300 x 300 DPI)

Figure 2. Simulated dormancy cycling in Cvi: Seeds were incubated at 5°C/dark at -1.2 MPa for up to 21 days before being transferred to water at 25°C/dark. At increasing periods of time dormancy status was determined by measuring germination following transfer of seeds to a buffer control, 50 or 250 μ M GA4+7 buffered at pH 5.0 at 20°C/light for 28 days. Data are mean ± SE (n = 3). Absence of error bars indicates SE is smaller than the symbol.

159x147mm (300 x 300 DPI)

Figure 3. Simulated dormancy cycling in Col-0, Ler and mutants in dormancy related and clock genes. Following 5°C/dark at -1.0 MPa for 28 days seeds were transferred to water and incubated in the dark at 25°C for 14 days before transferring to 5°C/dark. At increasing intervals dormancy status was determined by measuring germination on water at 25°C/light for 14 days. (a) Dormancy related mutants. (b) Circadian clock mutants. (c) CCA1 and LHY overexpressing lines. Data are mean \pm SE (n = 3). Absence of error bars indicates SE is smaller than the symbol.

80x151mm (300 x 300 DPI)

Figure 4. Seasonal coordination of clock gene transcription in winter (Cvi) and summer annual (Bur) ecotypes. Depth of dormancy in (a) Cvi (time to 50% after-ripening (AR50)) and (e) Bur (base water potential (Ψb)) with soil temperature at seed depth (Data from Footitt et al. 2011 and 2013). Transcription profiles of the morning genes CCA1, LHY, and the evening gene TOC1 in (b) Cvi and (f) Bur. Transcription profiles of GI and PRR7 in (c) Cvi and (g) Bur. Transcription profiles of evening complex genes ELF3 and LUX in (d) Cvi and (h) Bur.

159x188mm (300 x 300 DPI)

Figure 5. Thermal time analysis of dormancy induction at high temperature following low temperature conditioning. (a) Wild type (Col-0) and the dormancy mutant, dog1-2. (b) Wild type (Col-0) and the circadian clock mutants, lhy20 cca1-1 toc1-2 and prr5-11 prr7-11 prr9-10. Data from Fig. 3, S1 and S2 are replotted against thermal time (sum of temperature above 0°C) for secondary dormancy induction at 20, 25 and 30°C. The response to thermal time fits the following relationships: Exponential decay (3 parameter) regressions describe Col-0 (R2= 0.972), lhy20 cca1-1 toc1-2 (R2=0.897) and prr5-11 prr7-11 prr9-10 (R2=0.860); while a linear regression describes dog1-2 (R=0.928). The same data for Col-0 appears in (a) and (b).

80x117mm (300 x 300 DPI)

Figure 6. ABA sensitivity of dormancy and clock mutants. Following three days at 5°C/dark on water seeds were transferred to ABA (10 – 250 nM) in buffer at pH 5.0 and cumulative germination recorded during incubation at 25°C/light over 14 days. Final germination at each concentration after 14 days (a) and (d). The time to 50% germination (b) and (e) in hours (h) of data in (a) and (d) respectively. Cumulative germination of dormancy mutants in the presence of 100 nM ABA (c). Cumulative germination of clock mutants in the presence of 50 nM ABA (f). Data are mean \pm SE (n = 3). Absence of error bars indicates SE is smaller than the symbol.

159x161mm (300 x 300 DPI)