8,869 research outputs found

    The emergence of international food safety standards and guidelines: understanding the current landscape through a historical approach

    Get PDF
    Following the Second World War, the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) teamed up to construct an International Codex Alimentarius (or 'food code') which emerged in 1963. The Codex Committee on Food Hygiene (CCFH) was charged with the task of developing microbial hygiene standards, although it found itself embroiled in debate with the WHO over the nature these standards should take. The WHO was increasingly relying upon the input of biometricians and especially the International Commission on Microbial Specifications for Foods (ICMSF) which had developed statistical sampling plans for determining the microbial counts in the final end products. The CCFH, however, was initially more focused on a qualitative approach which looked at the entire food production system and developed codes of practice as well as more descriptive end-product specifications which the WHO argued were 'not scientifically correct'. Drawing upon historical archival material (correspondence and reports) from the WHO and FAO, this article examines this debate over microbial hygiene standards and suggests that there are many lessons from history which could shed light upon current debates and efforts in international food safety management systems and approaches

    Effect of timing and method of enteral tube feeding for dysphagic stroke patients (FOOD): a multicentre randomised controlled trial

    Get PDF
    Summary Background Undernutrition is common in patients admitted with stroke. We aimed to establish whether the timing and route of enteral tube feeding after stroke affected patients’ outcomes at 6 months. Methods The FOOD trials consist of three pragmatic multicentre randomised controlled trials, two of which included dysphagic stroke patients. In one trial, patients enrolled within 7 days of admission were randomly allocated to early enteral tube feeding or no tube feeding for more than 7 days (early versus avoid). In the other, patients were allocated percutaneous endoscopic gastrostomy (PEG) or nasogastric feeding. The primary outcome was death or poor outcome at 6 months. Analysis was by intention to treat. Findings Between Nov 1, 1996, and July 31, 2003, 859 patients were enrolled by 83 hospitals in 15 countries into the early versus avoid trial. Early tube feeding was associated with an absolute reduction in risk of death of 5·8% (95% CI –0·8 to 12·5, p=0·09) and a reduction in death or poor outcome of 1·2% (–4·2 to 6·6, p=0·7). In the PEG versus nasogastric tube trial, 321 patients were enrolled by 47 hospitals in 11 countries. PEG feeding was associated with an absolute increase in risk of death of 1·0% (–10·0 to 11·9, p=0·9) and an increased risk of death or poor outcome of 7·8% (0·0 to 15·5, p=0·05). Interpretation Early tube feeding might reduce case fatality, but at the expense of increasing the proportion surviving with poor outcome. Our data do not support a policy of early initiation of PEG feeding in dysphagic stroke patient

    Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs

    Investigation of Statistical and Imaging Methods for Luminescence Detection of Irradiated Ingredients

    Get PDF
    This project investigated two potential approaches to improving the reliability of lumines-cence methods for detecting minor irradiated ingredients in foods. Whereas in the 1980’s there were no validated methods for laboratory detection of irradiated foods, work conducted in the UK and elsewhere by the mid 1990’s had resulted in the development of a series of physical, chemical and biological methods capable of detecting a range of irradiated food classes. Of these the luminescence methods embodied in EN1788 (Thermoluminescence) and EN13751 (Photostimulated luminescence) standards have been applied to detection of a vari-ety of products including herbs and spices, and seafood. In common with the other EN stan-dard methods almost all validation work had been originally conducted using pure irradiated or unirradiated ingredients. Yet application experience had shown the presence of mixed products containing both irradiated and unirradiated ingredients. A short study was commis-sioned by MAFF to investigate the impact of blending on standard EN1788 methods, and on the provisional draft EN13751 (the standard having been published in the meantime) method. This showed the impact of dilution of irradiated material between 10% and 0.1% concentra-tions on detection rates, which unsurprisingly are reduced by extreme dilution. UK labelling regulation, both before and after adoption of the European Directive on Food Irradiation, call for labelling of all irradiated ingredients regardless of concentration or origin within the final product. This study was therefore motivated by the recognition of the long term need for im-proved methods to improve reliability at low concentrations. Two complementary approaches were investigated. The project first examined whether TL data collected using the EN1788 method could be enhanced using advanced statistical proce-dures. Data sets from the SURRC TL archive, and from project CSA4790 were used both to define the characteristics of irradiated and unirradiated end members, and to assess classifica-tion methods using the controlled blending experimental data sets of CSA 4790. Multivariate analyses, based on principal components analysis and discriminant analysis of glow curve data; kinetic deconvolution approaches coupled to PCA and DA, and neural analyses were investigated and compared with detection rates achieved using expert visual classification. To complement this experiments were undertaken to explore the potential of using focussed laser stimulation to produce spatially resolved measurements from mineral grains separated from foods. Two systems were evaluated based on IR and visible band lasers. Work was under-taken to explore sample presentation and to assess the ability of this approach to distinguish mixtures of irradiated and unirradiated grains. The statistical work was successful in developing three approaches which could be used for objective identification of irradiated materials. Pure irradiated and unirradiated data sets from 150 sample pairs were obtained having searched the SUERC archive of more than 3500 lu-minescence analyses. These were used to set up multivariate analyses based on the ap-proaches outlined above. Performance in recognising irradiated ingredients using these meth-ods was then assessed with data drawn from the MAFF blending investigation, comprising 160 permutations of irradiated and unirradiated herbs and spices at 10%, 1% and 0.1% con-centrations. It was possible to achieve good detection rates with alatistical approaches, the best approaches inigated being the use of glow curve deconvolution coupwith li discrimination, and the use of neural appros. The absolute performance achieved matched that opert visual clfication utilising the revised EN1788 criterwhich were adopted within the international standauring course of this project. The use of ad-vancedtistical methods, while not adding performance, can pde objective support to visual classifications. During performance assessment it was aloted that theformance of all methods wasficiently close to infer that detections rates are most dependent on the statistical presence or absence of irradiated grains within the extracted samples used for TL analysis. This raises practical suggestions for improving detection rates at low concentrations based on the use of larger samples and more specific mineral separation approaches. These may be worth investigating further. Laser scanning approaches were also investigated using highly focussed laser beams to stimulated luminescence sequentially from different parts of separated mineral samples. Work was conducted using a system which had been developed in earlier work at SUERC, and then followed by additional investigation using an improved instrument built during the project. Initial work confirmed the feasibility of using laser scanning approaches to obtain spatially resolved luminescence data at or near the dimensions of individual mineral grains. Practical obstacles included the recognition that laser scattering from surfaces coated with mineral grains introduced an element of cross-talk between different parts of the sample, and difficulties in accurate re-positioning of the sample using the first generation prototype in-strument. Work was conducted to investigate a series of different sample presentation media to improve the former, and to incorporate high precision mechanical and optoelectronic means of re-positioning samples between initial measurements, external irradiation, and sub-sequent re-measurement. Both IR and visible band semiconductor lasers were investigated with successful production of single grain images. The short and medium term reliability of the lasers used was acceptable. The lasers used both however eventually failed, which sug-gests that long term lifetime may be an issue for further work. Of the two lasers the IR laser in particular gave a good signal to background ratio for discriminating between irradiated and unirradiated grains. Quantitative analysis of the grain resolved images confirms the potential of this approach in identifying minor irradiated components. The overall conclusions of the work are that both statistical approaches and imaging instru-ments are able to enhance current methods. The observation that visual classification can match the performance even of deconvolution or neural approaches suggests that future effort should be directed more towards improvement of grain statistics in conventional measure-ments, and in further development and investigation of imaging approaches. In these ways it can anticipated that the performance of standard luminescence methods for detecting dilute mixtures of irradiated and unirradiated food ingredients could be significantly improved. To do so would further enhance work conducted by FSA and other bodies to ensure that regula-tions governing the use of irradiation in food processing and the labelling of imported foods are followed

    Antimicrobial resistance: a biopsychosocial problem requiring innovative interdisciplinary and imaginative interventions

    Get PDF
    To date, antimicrobials have been understood through largely biomedical perspectives. There has been a tendency to focus upon the effectiveness of pharmaceuticals within individual bodies. However, the growing threat of antimicrobial resistance demands we reconsider how we think about antimicrobials and their effects. Rather than understanding them primarily within bodies, it is increasingly important to consider their effects between bodies, between species and across environments. We need to reduce the drivers of antimicrobial resistance (AMR) at a global level, focusing on the connections between prescribing in one country and resistance mechanisms in another. We need to engage with the ways antimicrobials within the food chain will impact upon human healthcare. Moreover, we need to realise what happens within the ward will impact upon the environment (through waste water). In the future, imaginative interventions will be required that must make the most of biomedicine but draw equally across a wider range of disciplines (e.g. engineering, ecologists) and include an ever-increasing set of professionals (e.g. nurses, veterinarians and farmers). Such collective action demands a shift to working in new interdisciplinary, inter-professional ways. Mutual respect and understanding is required to enable each perspective to be combined to yield synergistic effects

    Statistical Optimization of Xanthan Gum Production and Influence of Airflow Rates in Lab-scale Fermentor

    Get PDF
    The present study was undertaken to investigate and optimize the possibility of xanthan gum production by Xanthomonas campestris PTCC1473 in 500ml shake flasks on the second grade date palm. Using an experimental response surface methodology (RSM) coupled with a central composite design (CCD), three major independent variables (nitrogen source, phosphor source and agitation rate) were evaluated for their individual and interactive effects on biomass and xanthan gum production in submerged fermentation. The optimum conditions selected for gum production were 3.15 g.l-1 for nitrogen source, 5.03 g.l-1 for phosphor source, and 394.8 rpm for agitation rate. Reconfirmation test was conducted, and the experimental value obtained for xanthan production under optimum conditions was about 6.72±0.26 g.l-1, which was close to 6.51 g.l-1 as predicted by the model. A higher yield of biomass production was obtained at 13.74 g.l-1 for nitrogen source, 4.66 g.l-1 for phosphor source, and 387.42 rpm for agitation rate. In the next stage, scale-up from the shake flasks to the 1-L batch fermentors was carried. By using the optimum conditions for xanthan gum, the biomass and xanthan gum concentrations after 72h in three levels of air flow rate (0.5, 1 and 1.5 vvm) were obtained as 3.98, 5.31 and 6.04 g.l-1,and 11.32, 15.16 and 16.84 g.l-1, respectively. Overall, the second grade date palm seemed to exhibit promising properties that can open new pathways for the production of efficient and cost-effective xanthan gum

    Neutrino masses and mixing parameters in a left-right model with mirror fermions

    Get PDF
    In this work we consider a left-right model containing mirror fermions with gauge group SU(3)CSU(2)LSU(2)RU(1)Y_{C} \otimes SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{Y^\prime}. The model has several free parameters which here we have calculated by using the recent values for the squared-neutrino mass differences. Lower bound for the mirror vacuum expectation value helped us to obtain crude estimations for some of these parameters. Also we estimate the order of magnitude of the masses of the standard and mirror neutrinos.Comment: 13 pages, version submitted to European Physical Journal
    corecore