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Summary

This project investigated two potential approaches to improving the reliability of lumines-
cence methods for detecting minor irradiated ingredients in foods. Whereas in the 1980’s
there were no validated methods for laboratory detection of irradiated foods, work conducted
in the UK and elsewhere by the mid 1990°s had resulted in the development of a series of
physical, chemical and biological methods capable of detecting a range of irradiated food
classes. Of these the luminescence methods embodied in EN1788 (Thermoluminescence) and
EN13751 (Photostimulated luminescence) standards have been applied to detection of a vari-
ety of products including herbs and spices, and seafood. In common with the other EN stan-
dard methods almost all validation work had been originally conducted using pure irradiated
or unirradiated ingredients. Yet application experience had shown the presence of mixed
products containing both irradiated and unirradiated ingredients. A short study was commis-
sioned by MAFF to investigate the impact of blending on standard EN1788 methods, and on
the provisional draft EN13751 (the standard having been published in the meantime) method.
This showed the impact of dilution of irradiated material between 10% and 0.1% concentra-
tions on detection rates, which unsurprisingly are reduced by extreme dilution. UK labelling
regulation, both before and after adoption of the European Directive on Food Irradiation, call
for labelling of all irradiated ingredients regardless of concentration or origin within the final
product. This study was therefore motivated by the recognition of the long term need for im-
proved methods to improve reliability at low concentrations.

Two complementary approaches were investigated. The project first examined whether TL
data collected using the EN1788 method could be enhanced using advanced statistical proce-
dures. Data sets from the SURRC TL archive, and from project CSA4790 were used both to
define the characteristics of irradiated and unirradiated end members, and to assess classifica-
tion methods using the controlled blending experimental data sets of CSA 4790. Multivariate
analyses, based on principal components analysis and discriminant analysis of glow curve
data; kinetic deconvolution approaches coupled to PCA and DA, and neural analyses were
investigated and compared with detection rates achieved using expert visual classification. To
complement this experiments were undertaken to explore the potential of using focussed laser
stimulation to produce spatially resolved measurements from mineral grains separated from
foods. Two systems were evaluated based on IR and visible band lasers. Work was under-
taken to explore sample presentation and to assess the ability of this approach to distinguish
mixtures of irradiated and unirradiated grains.

The statistical work was successful in developing three approaches which could be used for
objective identification of irradiated materials. Pure irradiated and unirradiated data sets from
150 sample pairs were obtained having searched the SUERC archive of more than 3500 lu-
minescence analyses. These were used to set up multivariate analyses based on the ap-
proaches outlined above. Performance in recognising irradiated ingredients using these meth-
ods was then assessed with data drawn from the MAFF blending investigation, comprising
160 permutations of irradiated and unirradiated herbs and spices at 10%, 1% and 0.1% con-
centrations. It was possible to achieve good detection rates with all statistical approaches, the
best approaches investigated being the use of glow curve deconvolution coupled with linear
discrimination, and the use of neural approaches. The absolute performance achieved
matched that of expert visual classification utilising the revised EN1788 criteria, which were
adopted within the international standard during the course of this project. The use of ad-
vanced statistical methods, while not adding performance, can provide objective support to
visual classifications. During performance assessment it was also noted that the performance
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of all methods was sufficiently close to infer that detections rates are most dependent on the
statistical presence or absence of irradiated grains within the extracted samples used for TL
analysis. This raises practical suggestions for improving detection rates at low concentrations
based on the use of larger samples and more specific mineral separation approaches. These
may be worth investigating further.

Laser scanning approaches were also investigated using highly focussed laser beams to
stimulated luminescence sequentially from different parts of separated mineral samples.
Work was conducted using a system which had been developed in earlier work at SUERC,
and then followed by additional investigation using an improved instrument built during the
project. Initial work confirmed the feasibility of using laser scanning approaches to obtain
spatially resolved luminescence data at or near the dimensions of individual mineral grains.
Practical obstacles included the recognition that laser scattering from surfaces coated with
mineral grains introduced an element of cross-talk between different parts of the sample, and
difficulties in accurate re-positioning of the sample using the first generation prototype in-
strument. Work was conducted to investigate a series of different sample presentation media
to improve the former, and to incorporate high precision mechanical and optoelectronic
means of re-positioning samples between initial measurements, external irradiation, and sub-
sequent re-measurement. Both IR and visible band semiconductor lasers were investigated
with successful production of single grain images. The short and medium term reliability of
the lasers used was acceptable. The lasers used both however eventually failed, which sug-
gests that long term lifetime may be an issue for further work. Of the two lasers the IR laser
in particular gave a good signal to background ratio for discriminating between irradiated and
unirradiated grains. Quantitative analysis of the grain resolved images confirms the potential
of this approach in identifying minor irradiated components.

The overall conclusions of the work are that both statistical approaches and imaging instru-
ments are able to enhance current methods. The observation that visual classification can
match the performance even of deconvolution or neural approaches suggests that future effort
should be directed more towards improvement of grain statistics in conventional measure-
ments, and in further development and investigation of imaging approaches. In these ways it
can anticipated that the performance of standard luminescence methods for detecting dilute
mixtures of irradiated and unirradiated food ingredients could be significantly improved. To
do so would further enhance work conducted by FSA and other bodies to ensure that regula-
tions governing the use of irradiation in food processing and the labelling of imported foods
are followed.
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1. Introduction

This report summarises work performed under Project CSA 5240 aimed at developing new
and improved techniques to detect blended mixtures of herbs spices and seasonings contain-
ing irradiated products.

Herbs, spices and seasonings are commonly treated with ionising radiation to provide an ef-
fective means of reducing undesirable microbiological loads without reducing organoleptic
properties. Herbs and spices are products with diverse sources and a multinational supply and
distribution chain. They are frequently mixed either to consolidate batches or to produce con-
sistent colour, quality of flavours or used in seasonings and compound foods. For all these
reasons irradiated herbs and spices can find their way into dilute mixtures in the food chain,
presenting a different range of analytical problems from those associated with pure irradiated
products.

UK and European legislation'* call for unambiguous declaration of irradiated products and
ingredients both at each stage in the supply chain and at point of sale. Presently, validated
methods™* for detecting irradiated foods have been specifically developed for pure irradiated
products and do not address the problem of blending. Blended products, especially those
which have a minor irradiated component within an unirradiated matrix, could dramatically
affect whether the sample would be identified as irradiated or not, using standard criteria.

The aim of the project is to address the difficulties presented by bulk or polymineral silicate
samples, using statistical approaches to TL and PSL analyses. Single grain imaging methods
will also be investigated, as this offers a way of distinguishing between individual irradiated
and unirradiated components from compound food samples.

Current validated TL methods use a combination of first glow shape and glow ratio to iden-
tify blends. The main identification criteria being the presence of TL first glow component
associated with unstable charge carriers. An approach to try and improve the objectivity is the
use of statistical analysis on glow shape. Three methods of glow shape analysis have been
identified; multivariate techniques, kinetic deconvolution, and neural networks; which
should, in principle, improve the detection rate for minor blends and result in a more objec-
tive set of classification criteria.

These methods will initially be evaluated using data sets from well-characterised unirradiated
and irradiated samples of many product types and origins, providing a basis for assessing
each method. The introduction of a series of blended materials prepared under CSA4790°,
representing combinations of sensitivity and concentration of both unirradiated and irradiated
material will provide a means of evaluating the performance of each of the statistical meth-
ods.

Blended mixtures will have a mixed population of irradiated and unirradiated grains of dif-
ferent sizes and mineral species. In recognition of these factors, it is expected that single
grain analysis by both TL and PSL methods would provide a discrete set of data for both the
irradiated and unirradiated components within the sample. The approach presently being
taken is to stimulate luminescence sequentially from individual grains using IR stimulation
and a motorised XY micrometer stage. Initial work has been ongoing, development and op-
timisation of data presentation and collection, using standard irradiated and unirradiated F1



feldspar. Further work includes the presentation of blended F1 at 0.1%, 1%, 10% and 50%
concentrations.

Section 2 of this report gives details of the statistical approaches used and how well they per-
form. Section 3 describes the exploratory PSL imaging approach showing scans obtained
from unirradiated and irradiated material. The work has been conducted in several stages. Ini-
tial work with a first generation laboratory system capable of IR stimulation and imaging
confirmed the general concept for production of images. However sample presentation with
respect to laser scattering effects was identified as an issues requiring attention. A number of
approaches to deal with this have been explored, leading to the development of a system util-
ising small pits drilled in a carrier plate. A second generation imaging instrument has been
developed, which is capable of multiple samples measurements, and also of configuration
with near IR, VIS and CO-2 lasers for PSL imaging and potentially single grain TL meas-
urements. This system has so far been evaluated with a green laser source, which together
with the IR work confirms the general validity of the imaging concept. In section 4 conclu-
sions are drawn about the statistical approaches, and the status of PSL imaging system as a
potential tool for further development.



2. Statistical Approaches
2.1 Outline of approaches

The first part of this project looked at using statistical methods to identify the presence of ir-
radiated components using data collected from existing machines using standard methods.
Three initial approaches were suggested in an attempt to increase the correct classification of
the recent irradiation history of submitted food samples as compared to current techniques.
These three approaches are:

e Multivariate Analysis

e Deconvolution (Inverse Problem solutions)

e Neural Analysis.

2.2 Data Sets

The study has been designed with the objective of trying to improve the detection criteria on
samples, prepared using standard TL and PSL methods™, which contain an irradiated com-
ponent. The aim is examine statistical approaches using glow shapes. For this study two stan-
dard data sets needed to be selected; one as a training set, which will contain unirradiated and
irradiated samples to establish initial statistical parameters. The second set will contain sam-
ples with known concentrations of irradiated material for performance testing.

For over a decade, research into TL and PSL detection methods for irradiated food has been
ongoing at SURRC. Data sets and retained samples for over 3500 samples have been system-
atically recorded and more recently transferred to an ACCESS database. The database con-
tains details of each sample submitted from external organizations for irradiation testing,
samples purchased for PSL research and instrument kits, samples purchased for interlabora-
tory trials and samples purchased for MAFF funded research — which include several hundred
UK purchased samples prior to the time food irradiation was permitted.

These samples are prepared implementing the standard EN13751 PSL and EN 1788 and V27
TL methods, and their data sets represent authentic unirradiated, irradiated and blended sam-
ples. All samples have a unique laboratory code, which can be cross-correlated to their meas-
ured TL and PSL data and classification. The TL data is recorded for both first and second
(normalised to 1kGy) from room temperature to 400°C at a heating rate of 5°C/s; with the net
glow curve (the background automatically being subtracted from the sample glow curve)
stored. The sample is identified using EN1788 criteria, which depends on the glow ratio
(G1/G2) and the shape of the first glow (G1). The temperature interval for evaluation of the
TL glow ratio is in the range of 150°C to 250°C.

A selection of TL data was identified from the database, which would use as the basis for the
training set. The initial set contained 150 data (75 duplicate analyses) for both unirradiated
and irradiated herbs and spices containing first, second glow curves and glow ratio for the
complete glow curve. For the initial set we were trying to obtain an evenly balanced number
of pure herbs and spices; containing 8 herb products of parsley, sage, oregano, rosemary,
thyme, mixed herbs, chives and basil, and ten spice products of cinnamon, black pepper,
white pepper, paprika, ginger, turmeric, cayenne, garlic, nutmeg, onion, chilli and cumin.



The data for the training set was extracted and reintegrated into 10°C bands between 0 and
400°C temperature range for statistical analysis; thus each glow curve can be represented by a
vector of 40 elements. The training set was then closely examined to ensure that we had well
characterised and a representative data set; with several data being rejected due to having ma-
jor electrical spikes, low sensitivity and outliers. The data for the training set was then plotted
to ensure that there was unambiguous separation between the unirradiated and irradiated
samples (Figure 2.1) and this set would be used in the exploratory statistical analyses to
evaluate performance.

An evaluation data set is required to test how well the statistical methods perform in compari-
son with standard methods. An ideal set would be the retained blended samples and data col-
lected from project CSA4790. Samples of six products (oregano, basil, sage, paprika, ginger
and cinnamon) were prepared combining irradiated material at three different concentrations
— 10%, 1% and 0.1% with unirradiated material under controlled conditions and the data re-
corded for both TL and PSL. The PSL analyses followed the EU standard method, and the TL
analyses were conducted relative to the EN1788 and MAFF V27 protocols. Results presented
in CSA4790° show that standard methods are able to detect a significant proportion of irradi-
ated blends at concentrations above 1-10%, however below these concentrations there is a
significant probability of non-detection, particularly for low sensitivity components.

Again, data for the evaluation set used net curves for the temperature region 0-400°C, which
were then reintegrated into 10°C temperature bands for the statistical analysis.

Both the training and evaluation data sets provide a starting point for exploring statistical ap-
proaches to data analysis and for evaluating performance.
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Figure 2.1: Glow ratio histogram for training set containing 110 unirra-
diated and 82 irradiated analyses



2.3 Multivariate Analysis

Principle components analysis can be used to examine the relationships among a set of p cor-
related variables. Transforming the original set of variables does this; in this application the
40 temperature values or the 40 deconvolved energy values, into a new set of uncorrelated
variables called principal components. These new variables are linear combinations of the
original variables and are generally listed in order of amount of variance that each compo-
nents accounts. This transformation is in fact an orthogonal rotation in p-space.

The objective is to see if the first few components account for most of the variation in the
original data. If they do, then the effective dimensionality of the data is less than p. This
situation arises when the original variables are highly correlated. In this application, there
will be a rather large correlation among the variables. This correlation arises because each TL
peak in the data set will extend over all temperature values. For example, the variables at 390
°C and 400 °C say the same thing because they both measure the same TL from peaks occur-
ring at other temperature values.

To do the analysis, the principle components of the ‘irradiated’ and ‘unirradiated’ data were
first found. Figure 2.2 shows a plot of the first three principle components determined from
the deconvolved data. The first principle component can be described as the difference be-
tween low energy and high energy populated traps. The second principal component can be
roughly described as the negative first derivative of the deconvolved data.

The first three principle components are an orthogonal rotation of the data in three-
dimensional space.

Figure 2.3 shows the result of this rotation formed from the first three principle components
of the deconvolved data. Two clusters of data are seen in the figure, one cluster of the irradi-
ated data and one cluster of the unirradiated data. This illustrates that the dimensionality of
the problem can be reduced from a large number of beginning variables down to a few further
analysis. Together, these seven components accounted for 99% of the variation in the data.
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Figure 2.3: First three principal components of the deconvolved training set
data

The first three principle components accounted for roughly 94% of the variation in the data.
In order to ensure that some of the outliers were not misclassified, a total of seven principle
components were used for further analysis.

Once these seven principle components were determined, they were then used with Discrimi-
nate Analysis to classify the 10 %, 1 % and 0.1 % mixtures.

2.4 Deconvolution approaches

In deconvolution, a series of Randall-Wilkins®’ peaks are used to model the data. The major
difficulty with this approach is correctly determining the number of peaks to accurately fit the
data. However, by introducing an activation energy and attempt-to-escape frequency distribu-
tion of the captured carrier population g[E,s], the number of peaks does not need to be
known.

Based on the assumption that the intensity of TL is described by a superposition of Randall-
Wilkins functions RW[E,s], the relationship between the charge carrier population g[E,s] and
the TL intensity I[T,p] is:

17,81 = [[ lE,sIRWIE,s,T, B1dEds (1)

where the Randall-Wilkins function is given by:



E s E = E
RWIE,s,T,B]=nysExp[——]— Exp| —— — | Exp[-—1d0 |. 2
[E,s,T,B]=nysExp| kT]B - Tjoxp[ ik )

Here ny is the initial trapped charge concentration at time t=0, [ is the heating rate, E is the
thermal depth of the populated trap, s is the attempt-to-escape frequency, T is the tempera-
ture, k is Boltzmann’s constant, and 0 is a dummy integration variable.

Eq.(1) belongs to a class of Fredholm® integral equations of the first kind. The equation may
also be regarded as an integral transformation between the spaces of (E,s) and the measurable
(T, B), which in operator notation is written as:

KglE,s]=1[T,B] 3)
where the linear operator K is defined in eq.(1).

Eq.(3) is then solved by using a non-negative least squares procedure (NNLS)’, where the
additional constraint of the non-negativity of the amplitudes g[E,s] is taken into account.

Unfortunately, the TL is only weakly dependent upon the heating rate. In order to correctly
solve eq.(3), there should be several orders of magnitude difference between the highest and
lowest heating rates used. Because of physical constraints upon the equipment, the highest
heating rates that can be used do not exceed about 10 K/s. Thus, one must use slow heating
rates in order to achieve the necessary separation in the heating rates. This leads to a dramatic
increase in the amount of time necessary to process a single sample (from a few minutes to
the order of weeks).

Because of this problem, a fixed value for the frequency factor has been used. By fixing the
frequency factor, the populated trap distribution can be obtained from a single TL data set.
Unfortunately, this means that if the frequency factor used is incorrect, then the determined
energy depths will not be correct either. While this would be a problem in many other appli-
cations, it does not prove to be a problem here. The exact thermal depths or frequency factors
of the populated traps do not need to be determined. It is only necessary to know if there is
charge in the thermally unstable’ traps. If there is charge in thermally unstable traps, it will
show up in the deconvolution indicating that the material was recently irradiated.

Figure 2.4 shows an example of the conversion of experimental data in temperature space
converted to energy space. The TL peak was created using four traps at 0.95, 1.0, 1.05, and
1.1 eV respectively and an initial population of no= 1.0 in each trap. In temperature space, the
traps combine to produce one broad, indistinct TL peak. It would be difficult to correctly de-
termine the number of contributing states in temperature space. In energy space, however,
each trap is distinctly seen making it much easier to determine the number of components
contributing to the TL. For a more in-depth discussion of the use of these techniques, see the
work of Larson et al."

" Thermally unstable here refers to traps that are shallow enough that all trapped charge will
leak out over a short time span (e.g. one year)
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Figure 2.4: Illustration of the conversion from temperature space to energy
space.

Figure 2.5a shows a deconvolution of a sample that is classified as ‘unirradiated’. The energy
range used for the deconvolution was 40 bins over the range of 0.9 eV-1.8 eV and a fre-
quency factor of s = 10'". The bulk of the trapped charge is found distributed around 1.6 eV.
There is a small tail extending to the shallower energy region, but there is little trapped
charge below the range of 1.3 eV. Figure 2.5b shows the measured TL used to perform the
deconvolution.

Figure 2.6a shows the deconvolution for a material that is classified as ‘irradiated’. The pa-
rameters used to deconvolve the TL were identical to the ones used for the ‘unirradiated’ ma-
terial. Again, there seems to be a distribution of trapped charges around 1.6 eV. However,
there is a much higher concentration of charge localized in the shallower traps in the range of
1.1eV — 1.36eV. This region corresponds to a depth that is thermally unstable. The presence
of charge in these traps strongly indicates the presence of an irradiation event within the past
year.

2.5 Neural Analysis

Another approach identified at the outset was the potential of applying neural network ap-
proaches to classification of data sets from blended products. While the underlying principles
and procedures involved are different from those of conventional multivariate approaches,
neural systems can be used for adaptive classification criteria based on training sets and for
pattern recognition. A potential advantage of these approaches compared with standard mul-
tivariate methods is their ability to exploit non-linear relationships within the data sets, which
are expected to be a characterisation of luminescence systems.

This section outlines exploratory work to implement and evaluate a neural approach to the
problem. In principle the neural systems can be applied to new data, reduced data in the form
of integrated data, normalised data, or deconvoluted data.

Neural Analysis can be broadly described as a technique that tries to relate the shape of the
TL data with the group status (irradiated or unirradiated). The field of study is very broad and
the number of possible networks that one can use is quite large.
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Figure 2.5: Deconvolution of an ‘unirradiated’ material. Here, (a) shows the de-
convolution and (b) shows the experimentally measured TL used for the
deconvolution
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Figure 2.6: Deconvolution of an ‘irradiated” material. Here, (a) shows the de-
convolution and (b) shows the experimentally measured TL used for the de-
convolution
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The most difficult part of the task is determining the correct network to use. The most prom-
ising of the networks found for this application were Back Propagation Network (BPN),
Probability Neural Networks (PNN), and Adaptive Resonance Theory (ART). This is not an
exhaustive list of neural networks that could be used for classification of food irradiation. Be-
cause of time constraints only a few methods were considered and only one method was
tested — BPN. BPN was tested first because it is the most widely used of the various algo-
rithms, ensuring that 3™ party software employing the BPN algorithm will not be difficult to
find. This, however, does not mean that BPN is necessarily the best neural network to use for
these applications.

A schematic of the Back Propagation Network is shown in Figure 2.7. The circles represent
nodes (neurons) that perform an identical action on all of its inputs. The arrows represent
weighted data being moved from one node to another.

The network is trained by presenting the training pattern (in this case, a complete set of irra-
diated and unirradiated data vectors) to the input layer of the network. Initially, random
weighting values are chosen and the information is propagated forward through the network
to determine the actual network outputs determined by the random weights.

The error terms are calculated on the output layers and the gradient of the error surface with
respect to each of the output-layer weights is found. Next, the gradient of the error surface
with respect to each of the weights on the hidden layers is calculated. This is where the con-
cept of back propagation formally enters. The errors on the output layer are calculated first,
then those errors are brought back to the hidden layer to calculate the surface gradient there.

Once the gradients have been calculated, each weight value is adjusted a small amount in the
direction of the negative of the gradient. Then, the next input pattern is presented and the
weight-update process is repeated. This is carried on until all the output-layer errors have
been reduced to an acceptable value, at which point the neural network has determined opti-

Output Layer

Hidden Layer

Input Layer

Figure 2.7: Schematic diagram of a Back Propagation Network
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mal weights. For a more technical introduction, a large number of books are available that
cover BPN, such as the one by Bishop'".

In this application, custom code was written and used to evaluate the effectiveness of the
back propagation algorithm in correctly predicting the irradiation state of the material. The
number of input nodes (neurons) used was the 40 different TL intensities taken over the heat-
ing range of 10-400 °C or the 32 inputs if only the temperature ranges of 90-400°C were
used. The number of nodes in the hidden layer is variable and chosen such that it minimized
the errors in classification the greatest. More than one hidden layer can be used and could in-
crease the accuracy of determination. However, additional layers were not tested because of
the additional computation time involved in weight determination and as the performance of
the back propagation using only a single hidden layer was already very good. Because of the
way the algorithm works, input data must be between 0 and 1. Thus, only normalized data
could be tested.

A series of 190 training vectors (110 irradiated, 80 unirradiated) along with their correct irra-
diation states was used to train the network. Figure 2.8 illustrates the value of the output er-
rors during the training of the network. It is seen that the algorithm is able to adapt the
weights such there is a considerable minimization of errors in correctly classifying the two
irradiation states.

2.5.1 Data constraining

A considerable amount of time was spent trying to determine the cause of outliers and to help
control these problem points and misidentifications associated with them.

Initially, all of the training data set was checked and any sets that were questionable were re-
moved. Of the remaining sets, all of the TL curves were checked for spurious glitches and
corrected if any were found. In the end, 110 fully unirradiated, 82 fully irradiated, 105 10%-
irradiated mixtures, 100 1%-irradiated mixtures, and 98 0.1%-irradiated mixtures remained.

0.25

0.2

0.15

0.1

Total output error

0.05

0 1000 2000 3000 4000 5000
Tteration

Figure 2.8: Calculated output errors after each iteration through the BPN network
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When normalizing the data to unit area, it is necessary to ensure that there is indeed an irradi-
ated signal present. If a TL signal that consists of only background noise is normalized to unit
area, one is then making noise comparable to a true TL signal. This will lead to outliers
where there should be none. In order to overcome this problem, 3x the background counts
(assumed to be 50 counts.s™) were subtracted off the data sets and any bins with a negative
count were set to zero. This ensured that noise in the measurements did not have a large ef-
fect when normalised, yet the amount was small enough that it did not unduly bias the data.
This is justified because most of the TL maximums were in the range of 10°-10" counts.s™,
thus 10” is at least an order of magnitude smaller than the low end of the TL range.

When calculating ratios, it was necessary to smooth the data before hand. Because the
unsmoothed ratios are not properly constrained, each TL curve is not merely a measure of the
luminescence emitted by the sample, but the luminescence emitted by the sample plus ran-
dom noise a. The ith component of the TL glow ratio r; can be approximated by:

TL[i
L, [i]

TL[i]>> a,[i], TL,[i]>> o,[i]
L _TLlval]

CTTL [ 4oLl @)

ol

o,[i]>> TL,[i], o,[i]>> TL,[i]
o, [7]

In areas of the glow curve where there is no TL, the glow ratio is a ratio of the noise in the
data. In the experimental data, there is little luminescence below the temperature range of
~90°C but there was a large number of large glow ratios in this region because of the uncon-
strained nature of the data. In order to overcome this problem, the temperature values below
90°C were not used, and the remaining data were smoothed to ensure that noise did not dis-
tort the glow ratios.

It is imperative that the glow curves do not become distorted during the smoothing. Several
different smoothing methods were tried in order to determine the method that best smoothed
the data without introducing distortions. The methods tried were moving averages, Bezier
spline interpolation, moving Bezier spline interpolation, Fourier filtering, and finally decon-
volution smoothing.

Moving averages worked very well as long as long as the 2" derivative of the data was ap-
proximately zero. However, in places where the 2™ derivative was quite large (e.g. at the
wings of the TL curves and at the peak), moving averages introduced a large amount of dis-
tortion in the data.

Three types of Bezier spline interpolation were tried — Bezier, Cubic, and Composite. These
methods did an admirable job with well-defined data, but suffered when the entire data set
was noisy or there was a large spike in the data.

Moving Bezier spline interpolation is similar to moving averages, but here a Bezier spline is
interpolated over the data subset and the corresponding point in the spline replaces the current
data point. This method does not distort the data in regions where the 2" derivative is quite
large, and thus works better than weighted averages in those regions. However, it is still sus-
ceptible to spikes in the data.
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Fourier filtering did not work very well. Using only 40 data points severely limits the upper
range of frequencies that can be filtered out. Thus, any Fourier filtering of the data severely
distorted the shape of the TL curve. In order for this method to work effectively, a much lar-
ger sampling of data points is necessary.

Deconvolution smoothing uses the method of deconvolution to first determine the energy
components, and then these components are used to recreate a smoothed TL curve. Because
the theoretical shape of a TL curve that enters into the deconvolution routine must extend
over many neighbouring data points, the method does not have the freedom to fit itself to
noise and spikes. A TL curve cannot simultaneously have a large value at one location and a
low value at the nearest neighbour, unlike noise, where values are uncorrelated to those of
neighbouring points. Thus, the routine simply ignores noise and spikes in the data ensuring
that only the TL contribution is fit. If a very high frequency factor is used, the method is able
to almost perfectly smooth the data. The major problem with this method is that it is the most
calculation intensive of all the methods tried. On average, it was at least 30x slower using de-
convolution smoothing compared to the next slowest method (moving Bezier spline interpo-
lation). However, because of its ability to smooth the data without distortion, all smoothing of
data was done using this method.

2.6 Results

Multivariate Analysis, Deconvolution and Neural Networks were applied to the training sets
to determine the effectiveness of the approaches. The data was presented in both original
form, normalized to unit area form, and smoothed form.

Initially, the three different methods were presented with the training data set to ensure that
they were able to correctly determine the training set. The data were presented to the methods
in a variety of forms. Any method that did not correctly identify all of the training data were
not tested any further.

Table 2.1 lists the results determined by the three methods

In total, six different techniques were successful in correctly determining all of the training
data. Table 2.2 lists the methods and the data inputs necessary to get a correct determination.

The methods that correctly determined all the training data were then used to evaluate the
10%, 1%, and 0.1% mixtures. Table 2.3 summarizes the efficiency of each method to cor-
rectly determine the mixtures along with the current methods ‘TL (1996)’ and ‘TL (1998)’.

From the data in Table 2.3, a number of methods can be eliminated because of substandard
performance. Those methods are TL(1996), Neural Network-Norm G1, Neural Network-
Norm G1/G2, and Neural Network-Norm D1/D2. Surprisingly, though, four of the methods
performed almost identically to TL (1998) and none exceeded those values. Those methods
are listed in Table 2.4.
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TOTAL
METHOD INPUT DATA UNIRR % IRR % CORRECT

%

G1 only 100 53.7 80.2

Norm G1 99.1 100 99.5

Multivariate G1/G2 100 54.9 80.7

Linear Norm G1/ G2 99.1 97.6 98.4

D1 only 100 52.4 79.7

Norm D1 100 100 100

D1 /D2 100 56.1 81.2

Norm D1 /D2 96.3 93.9 95.6
G1 only - - -

Norm G1 99.1 100 99.5
Multivariate Gl/G2 - - -

Quadratic Norm G1 /G2 98.2 98.8 98.4
DI only - - -

Norm D1 99.1 98.8 99

D1 /D2 95.2 97.4 96

Norm D1 /D2 89.2 92.1 90.7

Deconvolution Low E D1/High E D2 100 100 100

Norm G1 only 100 100 100

Neural Networks | Norm G1 / G2 100 100 100

Norm D1 only 100 100 100

Norm D1 /D2 100 100 100

Table 2.1: Percentages of training data for various methods and input data sets
correctly determined.

TECHNIQUE DATA INPUT
Multivariate--Linear Norm D1
Deconvolution Low E D1/High E D2
Norm G1 only
Neural Network Norm G1 /G2
Norm D1 only
Norm D1/ D2

Table 2.2: Techniques that correctly determined all of the training data
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METHOD CRITERION 10% 1% 0.1%

TL (1996) G1/G2>0.1 84% | 35.0% | 15%
91/108 | 38/108 | 15/100

TL (1998) G1/G2 < 0.1 peak 96% | 75.0% | 54%
104/108 | 81/108 | 54/100
Discriminate analysis Normalized D1 90.5% | 70.0% | 54.1%
95/105 | 70/100 | 53/98
Deconvolution Low EDI/High ED2 | 96.1% | 75.0% | 54.1%
101/105 | 75/100 | 53/98
Norm G1 89.5% | 51.0% | 24.5%

94/105 | 51/100 | 24/98
Neural Network Norm G1/G2 77.1% | 27.0% | 13.3%
81/105 | 27/100 | 13/98
Norm D1 94.3% | 64.0% | 54.1%

99/105 | 64/100 | 53/98
Norm D1/D2 81.9% | 50.0% | 23.5%
86/105 | 50/100 | 23/100

Table 2.3: Performance of methods on mixtures of irradiated and unirradiated

material using TL.

METHOD CRITERION 10% 1% 0.1%

TL (1998) G1/G2 < 0.1 peak 96% | 75.0% | 54%
104/108 | 81/108 | 54/100
Discriminate analysis Normalized D1 90.5% | 70.0% | 54.1%
95/105 | 70/100 | 53/98
Deconvolution Low EDI1/HighED2 | 96.1% | 75.0% | 54.1%
101/105 | 75/100 | 53/98
Neural Networks Norm D1 94.3% | 64.0% | 54.1%
99/105 | 64/100 | 53/98

Table 2.4: Four best methods for determining mixed grain irradiations.
Notice the almost identical performance of all four methods.
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The possible effects of grain statistics are considered here; currently the size distribution and
grain numbers from the sample have not been determined explicitly, although the samples
have been retained. The following analysis however confirms that grain statistics could in-
deed be one of the key considerations, which determine the success of experiments to detect
low concentration blends.

Given the outcome of this analysis it may be worth investigating i.) the actual grain size dis-
tributions of the samples examined, ii.) the potential for improving performance of the 0.1%
blends by taking larger samples in conjunction with the statistical approaches outlined here. It
will also be necessary to address grain statistical aspects when developing procedures based
on imaging and single grain approaches.




If one considers the probability of finding an irradiated grain in a mixture of unirradiated
grains, the fact that four different methods determined almost identical percentages are no
longer surprising. Consider, for example, the 0.1% mixtures. If one assumes that there are
approximately 1000 grains on the disk, then there is a 64.23% chance of having at least one
irradiated grain on the disk. This value compares very closely with the 54% that was actually
determined by the four best methods. Because four different methods determined almost
identical values, this would indicate that the methods are not missing 46% of the cases, but
that 46% of the samples had no irradiated grains on them.

For the 0.1% mixtures, to ensure a 99% certainty that there will be at least one irradiated
grain on the disk, a minimum of 4602 grains must be used. It would be expected that different
mineral grains would exhibit different luminescence sensitivities, which would create an ad-
ditional effect. If the irradiated grains have low sensitivity then more grains will be needed to
ensure a signal is detected. The numbers actually used, though, were around 1000 grains. In
order to see improvements in the performance of the four best methods, much larger numbers
of grains must be used.
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3. Imaging approaches

The second part of the project investigated options for instrumental development to improve
detection of blended materials containing irradiated materials. The approach investigated was
the use of scanning systems in which grains distributed across a disc are sequentially stimu-
lated by a focussed laser, resulting in detected signals from small numbers of grains to be
measured at one time. The result would be to produce images in which single irradiated
grains would hopefully be identifiable amongst a much larger number of unirradiated grains.

3.1 IR Scanning System

A system for IR stimulation of individual mineral grains spread across a disc had been devel-
oped prior to this project. It uses a focused pulsed laser diode, with the PSL signals recorded
using digital lock-in photon counting. By moving an X-Y micrometer stage, driven by step-
ping motors, the sample can be sequentially stimulated by the laser and hence an image
formed. The system is shown schematically in figure 3.1.

When the laser stimulates a grain that has been highly irradiated, a large amount of lumines-
cence is emitted from the grain, with corresponding low levels of luminescence from unirra-
diated grains. This gives rise to regions of relatively intense luminescence within regions of
relatively low luminescence. Images showing regions of low luminescence emission along
side regions of high luminescence emission indicate that the irradiation states of the various
grains are mixed. One of the first measurements with this system, using a mixture of irradi-
ated and unirradiated mineral grains of approximately 100um diameter, with 100um steps
between static measurements on a pixel matrix is shown in Figure 3.2. The data capture using
this method is relatively slow, however it is possible to obtain a high sensitivity image.

Laser Diode : Point Source - 830 nm 20 mW 20 pm spot at 25.4 mm
XY stage : Time & Precision, 2.5 pm step (1.25 ym half step), 3.2 cm reach

9883QB PMT
HV/LV
. Photon Counter
Filters
IR Laser
Diode Module Laser power supply

& modulation control

Computer

Sample Chamber O

Xy stepper motor

Xy stage DE control

Figure 3.1: Schematic of the IR scanning system
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Figure 3.2: Initial IR scan of irradiated feldspar grains

3.1.1 Scanning experiments

After the initial measurements, the prototype system was modified to use a 20um diameter
830nm 20mW laser and an XY stage capable of 2.5um steps with a range of 15cm x 15cm.
The sample holder was been raised by 8mm to obtain a more focused beam (reducing the
beam spot size) and a diode fixed to the side of the sample holder to aid repositioning and
alignment.

Experiments were carried out using controlled mixtures of feldspar containing 10%, 1% and
0.1% irradiated material. The feldspar blends were dispensed onto 10mm diameter stainless
steel discs, sprayed with silicone grease to hold the grains in place, in the shape of a cross.
During scanning the disc was moved under the laser beam in 100pum steps, comparable to the
sizes of the individual grains. After each step a one second measurement was recorded. The
discs were then given a 200Gy dose using a *’Sr beta source, preheated at 100°C for 30 min-
utes and rescanned using the same setup as before. Scanning was conducted in down count-
ing mode, where the system continually subtracts its own background. The software produces
an image on the screen during measurements, allowing the operator to view the image being
constructed as the data is collected. This also provides an early indication of whether there
are any problems and as measurements can take several hours, early identification of unsuc-
cessful measurements is valuable. Analysis of the data has been done through an existing
program which produces 16 colour images of the disc. The scanning results are shown below
in figures 3.3 and 3.4 for both 1* and 2™ scans.

The cross shaped pattern on the discs can be seen for both the 10% and 1% discs, with the
10% being significantly better pronounced, as dispensed. For the 1% disc there is no image
observed, indicating that no irradiated grains had been dispensed onto the disc. Given that
only a relatively small number of grains (several hundred) were dispensed this is not entirely
surprising.
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Figure 3.3: IR scans from mixed feldspar grains (90% unirradiated: 10% ir-
radiated to a 1 kGy dose). The first scan is from the sample as dispensed; then
second scan follows a 200 Gy beta dose to the whole disc.
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Figure 3.4: IR scans from mixed feldspar grains (99% unirradiated: 1% irra-

diated to a 1 kGy dose). The first scan is from the sample as dispensed; then
second scan follows a 200 Gy beta dose to the whole disc.

Figure 3.5: IR scans from mixed feldspar grains (99.9% unirradiated: 0.1%
irradiated to a 1 kGy dose). The first scan is from the sample as dispensed;
then second scan follows a 200 Gy beta dose to the whole disc.
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Another problem encountered with this initial system is that of repositioning of the disc after
irradiation for re-measurement. From the above scans we can see that there has been slight
rotation in some cases of the disc between first and second measurements.

3.1.2 Sensitivity

The precision of the results obtained from the system and the range of applications for which
it is suitable are dependant upon the minimum dose that can be detected by the system. Opti-
misation of the signal to background ratio of the scanning system depends on the depletion
rate of signals stimulated at high power densities with a focused laser. In common with other
PSL work, it is expected that the initial rate of signal depletion will decline. While it is desir-
able to record as many photons as possible from the luminescence emitted from each grain,
unnecessary prolongation of the measurements will not only lead to decreased system
throughput but also reduced signal to background ratios. For practical reasons this instrument
operates with measurement times of whole numbers of seconds. This could be varied by
modification of software and timing hardware, however prior to doing this, the extent of de-
pletion in repeat scans was investigated using a 1% irradiated sample.

Two discs were sparsely covered with 1% irradiated feldspar. The sample was scanned using
the usual setup and the scan was repeated for a second time. The results are shown in figure
3.6. One measurement removes most of the signal from the grains, leaving only a very small
residual signal (around background levels). This indicates that for 1 second measurements the
vast majority of the stored signal in each grain has been stimulated, and that the measurement
is longer than is needed. Future work could involve modification of the equipment and soft-
ware to allow shorter measurement times.

3.1.3 Presentation of mineral grains

Minerals have been presented to the IR system for measurement as evenly coated reflective
discs. There is some evidence of laser scattering effects, which might limit the ability to de-
tect true single grain images. This effect occurs when the laser light is not completely ab-
sorbed by the stimulated grain and scatters to other parts of the sample. This scattered light
can then strike another grain on the disk, causing it to emit stimulated luminescence. This re-
sults in the amount of luminescence measured at one location on the sample being not only
the luminescence emitted by the optically stimulated grain, but also the sum of the lumines-
cence emitted from grains being excited from the scattered stimulation light. This may also
deplete some of the trapped charge in the grains being excited by the scattered stimulation
light, and at a later time the measured emission from these grains will then be low due to the
previous depletions of the trapped charge population.

From the data collected so far, it is unclear how much of a problem this is, although it is
highly unlikely that it is intense enough to deplete an irradiated grain to background levels.
However, it is possible that the scattering effects limit the integrity of the images, therefore
different ways of presenting the minerals on disc to the system have been investigated, with a
view to the minimization of these effects.
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Various methods of sample presentation have been considered to reduce this problem includ-
ing:

1) Presentation of grains on adhesive, non-reflective backing materials

i1) Embedding the minerals in a thin layer of bluetack or other similarly soft material

iii) Presentation of grains in small drilled recesses in a flat disc

The results of investigation of these approaches are shown below in figures 3.7 to 3.11.

Figures 3.7 and 3.8 show scanned images for feldspar containing 1% and 0.1% irradiated ma-
terial respectively. The discs are coated with a material, similar to double sided sticky tape,
used for mounting samples for electron microscopy which holds the grains in place while
eliminating the majority of reflections from the disc surface. The grains stand above the sur-
face of the disc, and so there is still some cross-talk between grains.

Figure 3.9 shows scanned images for feldspar containing 1% irradiated material pressed into
a thin layer of bluetack. This results in much reduced cross-talk though there is some evi-
dence of the laser reflecting off of the material. Compared to other methods there is some ad-
ditional effort required in dispensing the sample onto the disc.

For both the adhesive backing and bluetack there are potential problems with how the mate-
rial would respond to preheating. Also, both of these methods would require sample prepara-
tion and dispensing to be done in ultra-clean environments as the potential for any stray min-
erals to adhere to the discs is very high.

Figures 3.10 and 3.11 show scanned images for feldspars containing 10% and 1% irradiated
materials respectively, dispensed onto anodised discs with small drilled pits in a hexagonal
pattern. The anodised surface significantly reduces reflections, while the metal surfaces in the
pits allows the laser to fully illuminate the mineral grains resulting in the maximum possible
luminescence signal. Each pit may hold several grains, though dispensing in a darkened envi-
ronment means it is impossible to ensure all pits hold at least one grain or that there are no
grains on the anodised surface. There is still some evidence of a small amount of reflection
from the surface of the disc stimulating grains either on the disc surface, or which sit slightly
above the surface in the pits, but the resulting background towards the top of each image is
still sufficiently small that the individual pits can still be observed against it.
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Figure 3.6: The effect of repeat IR scanning on signal levels obtained from a
mixed feldspar sample containing 99% unirradiated grains and 1% irradiated
grains.
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These results indicate that:

i)

iii)

Black backing seems to improve the spatial resolution of the images, in keeping with
the general expectation that cutting down reflections should minimise scatter effects.
However, this mode of sample presentation reduces the reflective enhancements of
detection efficiency leading to lower light sums in the scans. This effect might dimin-
ish detection limits unacceptably.

Pressing the grains into a soft translucent substrate, while avoiding the loss of signal
sensitivity does not improve spatial resolution in comparison with flat discs. If setting
samples into a resin, for example, this would need to be a light absorbing medium,
which would also diminish sensitivity

The drilled discs with a hexagonal matrix of 0.2mm diameter holes cut into the reflec-
tive Al behind a black anodise surface appear to combine the benefits of both ap-
proaches. Individual signals from each hole are well resolved in trials. It appears that
the reflective backing is projecting the luminescence forward in the direction of the
PMT resulting in high detection efficiency.
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i
Figure 3.7: Results from mixed feldspar grains (1% irradiated) dispensed as a
cross on black adhesive stubs. The first scan is from the sample as dispensed;
then second scan follows a 200 Gy beta dose to the whole disc.
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Figure 3.8: Results from mixed feldspar grains (0.1% irradiated) dispensed as a cross

on

black adhesive stubs. The first scan is from the sample as dispensed; then second

scan follows a 200 Gy beta dose to the whole disc.
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Figure 3.10: 10% Feldspar presented in a hexagonal array of drilled 0.2mm di-
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Figure 3.11: 1% Feldspar on hexagonal pitted disc
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3.1.4 Quantitative Analysis of Scanned Data

By integrating the number of photon counts from each pit it is possible to do some quantita-
tive analysis of the data from the scanning experiments. This was done by loading the data
into a Geographical Information System (GIS) and using techniques developed for analysis of
mapped data. A mask was produced, with each pit enclosed by a labelled circle, as shown in
figure 3.12. At present the mask has to be drawn by hand, and adjusted for each scan as the
disc is not located in the same place for each scan. Future developments would be needed to
automate this analysis process, possibly involving developing stand alone software to per-
form this task. Each circle encloses 14+1 measurement locations. For the first scans, where a
fairly uniform background is observed, an average background per measurement location is
determined, and then subtracted from the counts for each pit taking account of the number of
measurements in each circle. For the second scans, a time dependant background is observed.
In these cases a larger area, enclosing approximately 30 locations, has been integrated around
each pit with the difference between this and the counts for the pit itself used to define the
local background. Typically, backgrounds of approximately 10* and 10° have been subtracted
from the first and second scans respectively. Tables 3.1 and 3.2 give the net integrated counts
for each pit for both the first and second scans, with the ratio of these, for the scan of the disc
with feldspar grains containing 1% and 10% irradiated material respectively.

Previous work'? has shown that it is possible to distinguish bulk irradiated and unirradiated
material from histograms of photon counts and scatter plots of PSL signals obtained before
and after irradiation, as illustrated in figure 3.13. Irradiated materials will have larger initial
PSL signals, and hence in the histogram be further to the right of the plot, however there is a
region where the classification from the initial signals is ambiguous. In the scatter plots, how-
ever, irradiated materials lie along the diagonal with approximately equal signals both before
and after irradiation.

Figure 3.12: Scanned image for the 10% irradiated feldspar following re-
irradiation, with the mask shown
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First Second First Second

Location Scan Scan Ratio Location Scan Scan Ratio
1 949 51241 0.019 41 1497 122452 0.012
2 764 85398 0.009 42 27291 217020 0.126
3 187350 135169 1.386 43 658 41959 0.016
4 17779 23404 0.760 44 194 74301 0.003
5 7662 34880 0.220 45 45640 111626 0.409
6 1824 12972 0.141 46 33457 48458 0.690
7 2123 14376 0.148 47 2186 79423 0.028
8 95041 95776 0.992 48 909 74966 0.012
9 11338 83925 0.135 49 1155 152952 0.008
10 181236 118088 1.535 50 4122 126752 0.033
11 2628 62086 0.042 51 471 88351 0.005
12 66514 55652 1.195 52 1360 121553 0.011
13 2096 83643 0.025 53 12196 184769 0.066
14 1772 31854 0.056 54 54 210436 0.000
15 25637 73659 0.348 55 269 63435 0.004
16 1824 172404 0.011 56 21052 66952 0.314
17 4085 139912 0.029 57 6729 13465 0.500
18 5674 66194 0.086 58 2621 62388 0.042
19 2038 44970 0.045 59 2892 74267 0.039
20 14092 40283 0.350 60 24752 131662 0.188
21 1552 94039 0.016 61 391 127501 0.003
22 2373 78355 0.030 62 1413 110620 0.013
23 1289 44139 0.029 63 22197 178803 0.124
24 1223 26871 0.046 64 -450 89546 -0.005
25 884 80373 0.011 65 -350 60479 -0.006
26 23705 140640 0.169 66 3791 2343 1.618
27 19909 200557 0.099 67 59266 66324 0.894
28 1906 157595 0.012 68 85762 245743 0.349
29 9156 100001 0.092 69 17583 229154 0.077
30 428828 356557 1.203 70 53 169451 0.000
31 3084 124913 0.025 71 527 64545 0.008
32 11893 26604 0.447 72 1609 82537 0.019
33 79737 426647 0.187 73 -1604 111164 -0.014
34 990 120321 0.008 74 17920 66075 0.271
35 1248 94674 0.013 75 107161 239999 0.447
36 5659 101640 0.056 76 -962 134393 -0.007
37 1076 77949 0.014 77 -941 100094 -0.009
38 1235 59083 0.021 78 -846 181503 -0.005
39 5420 269759 0.020 79 -818 119956 -0.007
40 1179 68092 0.017 80 -1299 99446 -0.013

Table 3.1: Net integrated counts for each pit for first and second scans of feldspar
containing 1% irradiated material
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First Second First Second

Location Scan Scan Ratio Location Scan Scan Ratio
1 9565 141993 0.067 37 859 90446 0.010
2 60867 254425 0.239 38 2312 96136 0.024
3 4198 174950 0.024 39 2749 162810 0.017
4 32435 117883 0.275 40 165345 141138 1.172
5 53231 127575 0.417 41 7794 89338 0.087
6 130929 124746 1.050 42 91868 104861 0.876
7 4769 136190 0.035 43 13605 98413 0.138
8 60631 103438 0.586 44 33117 166254 0.199
9 21897 167798 0.130 45 8032 134885 0.060
10 13548 98871 0.137 46 81458 145973 0.558
11 894 147268 0.006 47 2749 61598 0.045
12 2094 117412 0.018 48 32080 54416 0.590
13 17651 100212 0.176 49 17907 168030 0.107
14 22149 181634 0.122 50 103781 136633 0.760
15 11620 134571 0.086 51 71906 130545 0.551
16 27683 76230 0.363 52 387584 121002 3.203
17 31330 116492 0.269 53 34382 72657 0.473
18 271519 56436 4811 54 5419 117705 0.046
19 380977 67480 5.646 55 6031 60915 0.099
20 22003 176274 0.125 56 1131 57333 0.020
21 32413 84432 0.384 57 1574 148218 0.011
22 13130 111233 0.118 58 97889 142523 0.687
23 8752 138634 0.063 59 47979 155133 0.309
24 256171 128882 1.988 60 75996 119178 0.638
25 165208 167347 0.987 61 49265 322241 0.153
26 11830 161848 0.073 62 92168 80689 1.142
27 15074 153535 0.098 63 66719 59381 1.124
28 716 120754 0.006 64 706 156947 0.005
29 193376 157820 1.225 65 -612 90849 -0.007
30 2373 146531 0.016 66 54545 196626 0.277
31 9364 92546 0.101 67 1583 130784 0.012
32 26298 192850 0.136 68 13345 71945 0.185
33 12060 167974 0.072 69 28078 110297 0.255
34 67182 114711 0.586 70 40717 117409 0.347
35 106923 133999 0.798 71 5970 110772 0.054
36 12374 136056 0.091 72 14606 144665 0.101

Table 3.2: Net integrated counts for each pit for first and second scans of feldspar
containing 10% irradiated material
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Figure 3.13: Separation of irradiated and unirradiated material using PSL, from Sander-
son et al 1996'

Figure 3.14 shows plots of the second scan net photon counts against the first scan net photon
counts, and histograms of the first scan net photon counts and the ratio of photon counts, for
the discs containing 1% and 10% irradiated feldspar grains. The scatter plots and first scan
histograms are of the same form as those shown in figure 3.13. It can be seen that the second
scans show very little range in response, indicating that the sensitivity range of the material
used is much narrower than that of a polymineral system such as that found from food sam-
ples. This is not entirely surprising as in this experiment the grains are all feldspar of similar
sizes. There is a very much larger spread in first scan photon counts, with the 10% material
showing more pits with greater photon counts. The histograms of the ratios show a substan-
tial range, with, again, the 10% material showing more pits with higher ratios. This reflects
the greater amount of irradiated material on the 10% disc. In an ideal system, there would be
a clear difference between irradiated and unirradiated grains, with the irradiated grains having
a large signal from the first scan, and correspondingly larger ratio to the second scan. In these
experiments, there is a much more continuous distribution observed. This could be the result
of factors such as the effect of multiple grains in individual pits returning signals for mixed
irradiated and unirradiated grains as well as instrumental difficulties such as background sub-
traction issues. It is expected that further experiments with larger number of discs containing
pure irradiated and unirradiated material of differing sensitivities would result in data show-
ing similar distributions to that in figure 3.13.

Figure 3.15 shows scatter plots of the ratios of the first scan to second scan against the first
scan photon counts. These clearly show that the highest ratios of photon counts correlate with
the higher first scan photon counts. It is also evident with the ratios plotted on a log scale that
there is a linear relationship. This indicates that the location of the mask on the two scans to
identify individual pits has correctly assigned data from each pit on the first scan to the corre-
sponding pit on the second.
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3.2 Green Laser Imaging System
3.2.1 System Design

In parallel with the exploratory measurements using the IR scanning system; further instru-
mental development was underway for a secondary system capable of scanning imaging at
other PSL stimulation wavelengths. Different wavelengths stimulate luminescence signals
from different charge traps. In particular, shorter wavelengths (eg: from green or blue lasers)
probe deeper traps in the mineral systems, and can hence be used to measure geologically in-
duced luminescence signals either for dating purposes or to help distinguish signals in food
products caused by artificial irradiation from those of natural origin.

Engineering drawing of the system were completed at SURRC and then taken to Hickinson’s
Engineering Company, Larkhall, to machine the components which would eventually make
up the new system. This stage of the project took quite a bit longer than expected, which in
turn set back the original timetable. Figure 3.16 shows a schematic diagram of the system;
containing the sample chamber, collar, PM tube and laser table. A photograph of the system
is shown in figure 3.17.

As with the existing system, an x-y stage is moved using two motors with 2.5um step size-
under computer control to position the disc under the focal point of the laser. A photomulti-
plier tube filtered with a 6mm Schott UG11 filter is used to count the photons stimulated by
the laser. The laser table is positioned against the sample chamber, but has interchangeable
legs and feet to allow for height adjustment to accommodate different stimulation systems.
The table has positioning holes drilled to attach an “optical microbench system”, as shown in
figure 3.18. Microbench is used to position the laser and optics (lenses and mirror) to obtain
the optimal working distance for focusing the laser and to obtain the smallest laser beam spot.

The disc is mounted on a holder on the slide within the sample chamber. The system has the
choice of two holders; a single sample holder and also a 16 sample holder which are easily
interchangeable. The sample holders are designed to hold the pitted anodised discs in the cen-
tre of the scanning area, in precisely fixed positions. The entire holder is removed for irradia-
tion prior to the second scan. The overall result is that the images for sequential scans align
almost perfectly so little additional effort is needed to account for differences in the positions
of the pits between scans during quantitative analysis.

Scanning is conducted using continuous laser operation, stepping across the entire disc and
pausing after each step to record counts. Initially measurement were carried out using the
green laser LCM-LL-01CCS250 frequency doubled Nd:YAG laser operating at 532nm with a
power of 0.3mW. However, after only 12 working hours the laser failed. This was replaced
with a similar green laser operating at 532nm with a power of ImW and a beam diameter of
less than 0.5mm.

Two custom made collars; a single port hole and the other with 6 LED ports, were designed
for this system to accommodate filters and LED’s, required for alternative modes of stimula-
tion. Presently the single port holed collar with a 12mm diameter 530 interference filter is
used.
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Figure 3.16: Schematic of second scanning system

Figure 3.17: The second scanning system

Figure 3.18: Microbench setup
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3.2.2 Scanning Experiments

Initial measurements were conducted to optimise the signal to background ratio, and also

produce detectable signals from a highly irradiated standard material to evaluate the system
performance.

Figure 3.19 shows scans of feldspar grains (0.1% of which were irradiated) distributed into
the pits of the anodised Al discs, with a second scan following irradiation of the entire disc
with a 200 Gy dose, using the green laser system. Although the higher energy photons of
green lasers result in luminescence from deeper traps than the IR laser, and hence it would be
expected to generate stronger signals, the signals recorded on these images are smaller than
those observed with the IR system due to the significantly reduced power of the laser used
(1mW compared to 20mW for the IR system). Even with the 200 Gy dose, the signals are not
very intense.

It can be seen that even with just 0.1% of the grains irradiated, and hence it is quite likely that
none of the grains on this disc have been irradiated, each of the pits generates a signal with
this system. This is most likely due to a combination of luminescence signals due to geologi-
cal doses excited by the higher energy of the green laser compared to the IR system and some
laser light reflected from the pits passing through the filter to the photomultiplier.

It can also be seen that the discs are much better positioned with this system compared to the
first IR system. They are located centrally within the scanning area, and all the scans show
that the pits are in almost exactly the same position. This makes quantitative analysis similar
to that conducted for the scans with the IR system much simpler, though there was very little
data collected with this system so such analysis has not been done.
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Figure 3.19: Scans of a pitted disc containing feldspar grains (with 0.1% of
grains irradiated), using the green laser system.

33



3.3 Proposed Scanning TL System

A modification to the system outlined above will enable it to heat single grains. This will en-
able the system to perform both PSL measurements and TL measurements as illustrated in
Figure 3.20. However, because the grain sizes are relatively small, the amount of lumines-
cence emitted during a TL measurement will be relatively weak.

The amount of luminescence emitted from a material during a TL measurement is propor-
tional to the total number of trapped charge carriers and the total number of recombination
centres. As one shrinks the size of the sample, the amount of TL emission over the course of
an experiment generally decreases. Using conventional TL heating rates (p < 10 Ks™), the TL
emission from single grain samples whose size is on the order of 100 um approaches the
minimum detection limit of the equipment. Fortunately, the total integrated luminescence
emitted from an irradiated sample during a TL measurement is constant and independent of
heating rate.” If at one heating rate the collected emission is too weak, the heating rate can be
increased, thereby, releasing more luminescence per unit time and increasing the amount of
light delivered to the photomultiplier tube. This means that samples that are marginally
measurable at a ‘low’ heating rate can be easily measured at higher heating rates.

Unfortunately, the current heating rate used in the TL instruments is 5 Ks™'. This is nearing
the upper limit for heating rates using a conventional electrical heating system. The main rea-
son for this limit is that the thermal mass of the system (heater, material, planchet, sample,
wires, etc.) is such that it is impossible to obtain a linear heating rate over the entire tempera-
ture range. An additional problem is that if heating rates exceed ~ 10 Ks™, the thermal gradi-
ent between the sample temperature and the thermocouple temperature increases to an unac-
ceptably large amount.

To overcome these problems, a CO; laser with emission at 10.6 pm will be used to directly
stimulate the samples. At these wavelengths, the energy of the light will be directly absorbed
by the sample and cause the sample to heat up when stimulated by the laser. A number of
groups have obtained heating rates of up to 10* Ks™ with CO, stimulation indicating that it is
a feasible method">"”. The main advantage to using a laser based heating system is that a
much quicker and finer control of the heating rate is possible because we are directly heating
the material instead of indirectly heating it by heating a bulky, and massive heater. In short,
when the laser light is decreased, the sample temperature instantly responds, whereas when
the power of a heater is reduced, the thermal momentum associated with the mass takes the
heater, and thus the sample, a finite time to respond.

One potential problem with this approach is if the materials suffer from thermal quenching of
the luminescence centres. In many luminescent materials, a non-radiative recombination
pathway exists and competes with the radiative recombination pathway. The capture cross-
sections of these two pathways are temperature dependent. At a low heating rate, the radiative
pathway is dominant and a large TL luminescence signal is measured. Higher heating rates
result in the TL peak shifting to higher temperatures and, at some point, the non-radiative
pathway can become dominant. This leads to an overall decrease in the total integrated TL
emission.

" The effects of thermal quenching are not considered here. If the material does exhibit ther-
mal quenching, then the total integrated TL emission is dependant on the heating rate.
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Figure 3.20: Schematic diagram of the heating system

Computer

To date, the CO; system has not been implemented practically, although the second scanning
instrument, PMT collar arrangement and laser table have been put together in a manner
which would permit practical investigation of this scheme in future work. Arguably the heat-
ing scheme will provide additional discrimination compared with the IR stimulation single
grain or small aliquot approach using many drilled discs to present sample grains. On the
other hand the signal to background ratios available from simple PSL scanning with drilled
discs may well be sufficient to improve the performance of conventional PSL measurements
to deal with blended mixtures. In which case the need for single grain TL could sensibly be
reviewed when the performance limits of single grain PSL have been explored further.
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4. Discussion

To summarise, the project aimed to explore a combination of statistical and imaging ap-
proaches to improving detection systems for irradiated ingredients in blended foods. This re-
port has outlined progress and results for statistical techniques that can be used to improve
objectivity and potentially performance for classifying TL data. Exploratory work has also
been conducted to examine scanning imaging approaches to analysis of mineral extracts at or
close to single grain levels.

Data sets from TL samples believed to be unirradiated or irradiated were identified and inte-
grated into 10°C intervals for use in exploring statistical methods. A performance evaluation
data set was also used based on the analyses of controlled mixtures of herbs and spices con-
taining 0.1%, 1% and 10% irradiated materials. Multivariate approaches were investigated
taking each TL glow curves as a 32 or 40 variable vector. Linear discriminant analyses re-
quire essentially uncorrelated data and therefore principal component analysis was applied to
reduce dimensionality. The first 3 principal components contained approximately 94% of the
variation in the data, 7 components accounting for 99% of the variation. These 7 component
scores were used for linear and quadratic discriminant analyses. The second approach exam-
ined used kinetic deconvolution of the luminescence glow curves based on equations describ-
ing first order luminescence kinetics from a distribution of a thermal trap depth. A non-
negative least squares algorithm was used to transform measured glow curves into energy
spectra indicating the distance of trap charge as a function of trap depth. This approach
proved highly successful in enhancing the resolution between relatively unstable signals from
recent irradiation and residual signals from deep traps retaining geological signals. The third
approach involved an evaluation of neural approaches of data analysis for classification. A
number of neural approaches were considered briefly and one of these, the back propagation
network (BPN) was investigated using custom software prepared for the purpose.

It was realised that these three main techniques could be used effectively in combination and
therefore it was decided to explore such combinations as well as the main approaches origi-
nally envisaged in the proposal. The approaches that correctly determined all the training data
were multivariate approaches coupled to deconvolution, a simple classification of decon-
volved data, and neural network approaches based either on normalised glow shapes or de-
convolved data. The conventional analysis of glow ratios also achieves the same performance
for the training set. The four best methods for detecting mixed grain status were the 1998 EN
standard specification which combines glow ratio analysis with visual classification of G1
peak shape, discriminant analysis applied to deconvolved glow shapes, simple classification
of deconvolved glow curve data, and neural analysis of the deconvolved first glow data. Of
these it might be argued that neural analysis coupled to deconvolution increase the objectivity
of classification without compromising performance. It was also realised that some of the di-
lute blends may have remained undetected as a consequence of their limited grain statistics.

This stage of the project has, therefore, been successful in developing and demonstrating a
powerful set of new approaches to dealing with TL data from dilute mixtures. It has also
raised questions of grain statistics which may lead to further improvements if coupled to re-
vised sample preparation schemes.

Exploratory work has also been conducted using scanning approaches. A system, which will

record PSL using IR stimulation, had previously been assembled. Exploratory experiments
have shown that images for unirradiated, irradiated and blended F1 feldspar can be obtained.
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One problem encountered has been the grain-grain cross talk; a problem which arises when
the laser light is not completely absorbed by the stimulated grain but scatters to stimulate
other grains on the disc. Further work to minimise and improve the system has been imple-
mented successfully based on an array of pre-drilled holes in sample discs. Methods for quan-
titative analysis of the scanned data have been developed, and examples of these analyses in-
dicate that they have the potential to identify small quantities of irradiated material within a
blend. Some further work to optimise these analyses is needed. In particular, the positioning
of the disc allowed translation and rotation of the sample following irradiation requiring each
pit to be relocated manually with each scan. Also, the measurement from each pit included a
background that varied across the disc, particularly following irradiation. A method of deter-
mining the local background has been used, though it would be preferable if instrumental and
procedural improvements were to significantly reduce this background prior to analysis.

A second scanning instrument has been assembled which provides practical solutions to both
the scattering problems and the problem of re-positioning samples between first and subse-
quent scans. Provision has also been made for measuring trays of 16 samples, which can be
automatically irradiated using existing beta sources, and for configuration of the laser system
to explore other stimulation schemes. The system has shown that it is capable of detecting
single grains. However, there is further potential to improve the resolution of the system. Ini-
tial experiments have shown that with a smaller laser beam spot size the system can be im-
proved.

As the IR system generates larger signals, and is less influenced by geological systems, it is
probably best suited to analysis of grains derived from food materials for the detection of low
concentrations of irradiated components. At present, the new instrument has not been used
with this laser, although fitting it would be a relatively simple procedure. A considerable
number of experimental measurements with known samples will be needed to fully character-
ise the response of the system to irradiated and unirradiated minerals. These should include
both fully irradiated and unirradiated samples, and samples of different minerals and grain
sizes to provide a much greater range in sensitivity. Considerations must also be given to
grain statistics, especially when measuring small sub samples of products containing an irra-
diated component. The multi-sample carrier should in principle be able to extend single tray
statistics to >1000 subsample compartments. From a grain statistical perspective this should
provide sufficient sample even in single grain form to provide a reliable basis for detection
down to 0.1-1% concentrations. If small numbers of grains per hole can be accepted, and ear-
lier work on bulk sample mixing has shown that 10% dilutions are reliably detected using
conventional means, then preparations with 5-10 grains per hole may be viable and provide a
means of detection at or below 0.1% concentrations.

A modification of the PSL system is in the works that will allow TL analysis to be performed
on single grains. Instead of using conventional electrical heaters, a 10 W CO, laser with
emission at 10.6 um is directed onto the sample. At these wavelengths, the energy of the laser
is absorbed by the sample and converted to heat. This allows a much quicker and finer con-
trol of the heating rate compared to an electrical heater. Higher heating rates are necessary in
order to increase the TL intensity from single grains to a measurable level. Not only will the
use of a CO; laser increase the heating rates by several orders, it will also increase the meas-
urement throughput by decreasing the amount of time necessary to perform a TL measure-
ment. One potential problem associated with these high heating rates is the possibility of
thermal quenching of the TL emission centres. It is currently unknown if thermal quenching
does exist in these materials and if so how much of an effect it will have on the measured TL.
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This will need to be investigated in the future. Meanwhile it can be concluded that the work
undertaken to date provides a proof of concept for the imaging/single grain approaches to lu-
minescence detection. The systems developed in the course of this work can now be evalu-
ated in future work with a view to improving conventional detection methods.
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5. Conclusions

This study has investigated methods of improving the detection of small quantities of irradi-
ated material within blended samples.

An investigation of statistical approaches to the analysis of TL measurements of samples con-
taining small proportions of irradiated material has shown that several methods can identify
the presence of irradiated material equally well. None of these are significantly better than
analysis by a human expert.

The controlling factor for detection of low levels of irradiated component within a sample is
the number of grains in the sample. For a sample containing 0.1% of irradiated material, over
4000 grains would be needed to give a 99% chance of having one irradiated grain in the sam-
ple. The standard TL method typically uses about 1000 grains for such analysis. An increase
in the sample size would improve detection of small quantities of irradiated material in a
blended sample.

One approach to increasing the sample size would be to employ the techniques used for min-
eral extraction prior to TL analysis to samples used for PSL, thus increasing the number of
grains in a PSL measurement. As it is expected that different ingredients in a blend would
have different minerals associated with them, another potential approach would be to extract
different mineral fractions and measure TL on each separately. This would increase the pro-
portion of irradiated grains in the fractions associated with the irradiated material.

An instrumental approach, in which the grains are distributed across a disc which is then
scanned by a laser for PSL analysis, has also been investigated. This would, potentially, allow
the luminescence from single irradiated grains to be measured with improvements to the sig-
nal to background ratio. Preliminary experiments have identified some potential problems in
this approach, most significantly through cross-talk between grains. The use of anodised
discs, with a number of small drilled pits to hold the grains, has successfully reduced this ef-
fect by a significant amount.

The prototype instrument has been tested using IR and green laser systems. The use of two
wavelengths stimulates different traps within the minerals, resulting in different sensitivities
to geological and artificially induced irradiation. There is some potential, which has yet to be
explored, in the use of two lasers for PSL to improve signal to background ratios.

A method for quantitative analysis of the data collected by such imaging systems has been
demonstrated. Some additional work is needed to account for backgrounds in the measure-
ments and fully characterise the system.

There is also the possibility of using laser-heating to conduct TL measurements using this
scanning system. Again, there has been insufficient time within this study to investigate this
option.

The prototype system also has the capability to use a multi-disc holder. This would enable the
measurement of several samples automatically, thus increasing sample through-put and the
size of samples that can be scanned. As noted earlier, the number of grains measured is the
controlling factor in identifying the presence of low quantities of irradiated material in
blended samples.
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