102 research outputs found

    Inactivation of potassium-evoked adrenomedullary catecholamine release in the presence of calcium, strontium or BAY-K-8644

    Get PDF
    AbstractThe rate of catecholamine release from cat adrenal glands perfused with Krebs solution containing 59 mM K declined exponentially during the first few minutes of depolarization. The rate of decline was considerably slower when Ca was substituted by Sr. The late addition of Ca, Sr or the Ca-channel activator BAY-K-8644 evoked a revival of secretion when catecholamine release was inactivated by prior K depolarization; the revival of secretion was independent of the depolarization time. These data demonstrate that inactivation of catecholamine release is specifically dependent on Ca; the modulatory role of Ca on secretion seems to be exerted at a step distal to the transmembraneous Ca channel

    Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin

    Get PDF
    Producción CientíficaWe use here a new very low-Ca2+-affinity targeted aequorin to measure the [Ca2+] in the endoplasmic reticulum ([Ca2+]ER). The new aequorin chimera has the right Ca2+-affinity to make long-lasting measurements of [Ca2+]ER in the millimolar range. Moreover, previous Ca2+-depletion of the ER is no longer required. The steady-state [Ca2+]ER obtained is 1–2 mM, higher than previously reported. In addition, we find evidence that there is significant heterogeneity in [Ca2+]ER among different regions of the ER. About half of the ER had a [Ca2+]ER of 1 mM or below, and the rest had [Ca2+]ER values above 1 mM and in some parts even above 2 mM. About 5% of the ER was also found to have high [Ca2+]ER levels but to be thapsigargin-insensitive and inositol trisphosphate insensitive. The rate of refilling with Ca2+ of the ER was almost linearly dependent on the extracellular [Ca2+] between 0.1 and 3 mM, and was only partially affected by mitochondrial membrane depolarization. Instead, it was significantly reduced by loading cells with chelators, and the fast chelator BAPTA was much more effective than the slow chelator EGTA. This suggests that local [Ca2+] microdomains connecting the store operated Ca2+ channels with the ER Ca2+ pumps may be important during refilling

    The dynamics of mitochondrial Ca2+ fluxes

    Get PDF
    AbstractWe have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5–10mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7μM, but its effect was hardly appreciable at 10μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range

    Mitochondrial Ca2+ dynamics in MCU knockout C. elegans worms

    Get PDF
    Producción CientíficaMitochondrial [Ca2+] plays an important role in the regulation of mitochondrial function, controlling ATP production and apoptosis triggered by mitochondrial Ca2+ overload. This regulation depends on Ca2+ entry into the mitochondria during cell activation processes, which is thought to occur through the mitochondrial Ca2+ uniporter (MCU). Here, we have studied the mitochondrial Ca2+ dynamics in control and MCU-defective C. elegans worms in vivo, by using worms expressing mitochondrially-targeted YC3.60 yellow cameleon in pharynx muscle. Our data show that the small mitochondrial Ca2+ oscillations that occur during normal physiological activity of the pharynx were very similar in both control and MCU-defective worms, except for some kinetic differences that could mostly be explained by changes in neuronal stimulation of the pharynx. However, direct pharynx muscle stimulation with carbachol triggered a large and prolonged increase in mitochondrial [Ca2+] that was much larger in control worms than in MCU-defective worms. This suggests that MCU is necessary for the fast mitochondrial Ca2+ uptake induced by large cell stimulations. However, low-amplitude mitochondrial Ca2+ oscillations occurring under more physiological conditions are independent of the MCU and use a different Ca2+ pathway.Ministerio de Economía y Competitividad - (Proyecto BFU2017-83509-R)Fondo Europeo de Desarrollo Regional (FEDER) y Junta de Castilla y León - (Projecto VA011G18

    The role of Ca2+ signaling in aging and neurodegeneration: Insights from caenorhabditis elegans models

    Get PDF
    Producción CientíficaCa2+ is a ubiquitous second messenger that plays an essential role in physiological processes such as muscle contraction, neuronal secretion, and cell proliferation or differentiation. There is ample evidence that the dysregulation of Ca2+ signaling is one of the key events in the development of neurodegenerative processes, an idea called the “calcium hypothesis” of neurodegeneration. Caenorhabditis elegans (C. elegans) is a very good model for the study of aging and neurodegeneration. In fact, many of the signaling pathways involved in longevity were first discovered in this nematode, and many models of neurodegenerative diseases have also been developed therein, either through mutations in the worm genome or by expressing human proteins involved in neurodegeneration (β-amyloid, α-synuclein, polyglutamine, or others) in defined worm tissues. The worm is completely transparent throughout its whole life, which makes it possible to carry out Ca2+ dynamics studies in vivo at any time, by expressing Ca2+ fluorescent probes in defined worm tissues, and even in specific organelles such as mitochondria. This review will summarize the evidence obtained using this model organism to understand the role of Ca2+ signaling in aging and neurodegeneration

    A confocal study on the visualization of chromaffin cell secretory vesicles with fluorescent targeted probes and acidic dyes

    Get PDF
    Producción CientíficaSecretory vesicles have low pH and have been classically identified as those labelled by a series of acidic fluorescent dyes such as acridine orange or neutral red, which accumulate into the vesicles according to the pH gradient. More recently, several fusion proteins containing enhanced green fluorescent protein (EGFP) and targeted to the secretory vesicles have been engineered. Both targeted fluorescent proteins and acidic dyes have been used, separately or combined, to monitor the dynamics of secretory vesicle movements and their fusion with the plasma membrane. We have now investigated in detail the degree of colocalization of both types of probes using several fusion proteins targeted to the vesicles (synaptobrevin2- EGFP, Cromogranin A-EGFP and neuropeptide Y-EGFP) and several acidic dyes (acridine orange, neutral red and lysotracker red) in chromaffin cells, PC12 cells and GH3 cells. We find that all the acidic dyes labelled the same population of vesicles. However, that population was largely different from the one labelled by the targeted proteins, with very little colocalization among them, in all the cell types studied. Our data show that the vesicles containing the proteins more characteristic of the secretory vesicles are not labelled by the acidic dyes, and vice versa. Peptide glycyl-L-phenylalanine 2-naphthylamide (GPN) produced a rapid and selective disruption of the vesicles labelled by acidic dyes, suggesting that they could be mainly lysosomes. Therefore, these labelling techniques distinguish two clearly different sets of acidic vesicles in neuroendocrine cells. This finding should be taken into account whenever vesicle dynamics is studied using these techniques

    Ca2+ Dynamics in the Secretory Vesicles of Neurosecretory PC12 and INS1 Cells

    Get PDF
    Producción CientíficaWe have investigated the dynamics of the free [Ca2+] inside the secretory granules of neurosecretory PC12 and INS1 cells using a low-Ca2+-affinity aequorin chimera fused to synaptobrevin-2. The steady-state secretory granule [Ca2+] ([Ca2+]SG] was around 20–40 lM in both cell types, about half the values previously found in chromaffin cells. Inhibition of SERCA-type Ca2+ pumps with thapsigargin largely blocked Ca2+ uptake by the granules in Ca2+-depleted permeabilized cells, and the same effect was obtained when the perfusion medium lacked ATP. Consistently, the SERCA-type Ca2+ pump inhibitor benzohydroquinone induced a rapid release of Ca2+ from the granules both in intact and permeabilized cells, suggesting that the continuous activity of SERCA-type Ca2+ pumps is essential to maintain the steady-state [Ca2+]SG. Both inositol 1,4, 5-trisphosphate (InsP3) and caffeine produced a rapid Ca2+ release from the granules, suggesting the presence of InsP3 and ryanodine receptors in the granules. The response to high-K+ depolarization was different in both cell types, a decrease in [Ca2+]SG in PC12 cells and an increase in [Ca2+]SG in INS1 cells. The difference may rely on the heterogeneous response of different vesicle populations in each cell type. Finally, increasing the glucose concentration triggered a decrease in [Ca2+]SG in INS1 cells. In conclusion, our data show that the secretory granules of PC12 and INS1 cells take up Ca2+ through SERCA-type Ca2+ pumps and can release it through InsP3 and ryanodine receptors, supporting the hypothesis that secretory granule Ca2+ may be released during cell stimulation and contribute to secretion

    Arrhythmic Effects Evaluated on <i>Caenorhabditis elegans</i>: The Case of Polypyrrole Nanoparticles

    Full text link
    Experimental studies and clinical trials of nanoparticles for treating diseases are increasing continuously. However, the reach to the market does not correlate with these efforts due to the enormous cost, several years of development, and off-target effects like cardiotoxicity. Multicellular organisms such as the Caenorhabditis elegans (C. elegans) can bridge the gap between in vitro and vertebrate testing as they can provide extensive information on systemic toxicity and specific harmful effects through facile experimentation following 3R EU directives on animal use. Since the nematodes' pharynx shares similarities with the human heart, we assessed the general and pharyngeal effects of drugs and polypyrrole nanoparticles (Ppy NPs) using C. elegans. The evaluation of FDA-approved drugs, such as Propranolol and Racepinephrine reproduced the arrhythmic behavior reported in humans and supported the use of this small animal model. Consequently, Ppy NPs were evaluated due to their research interest in cardiac arrhythmia treatments. The NPs' biocompatibility was confirmed by assessing survival, growth and development, reproduction, and transgenerational toxicity in C. elegans. Interestingly, the NPs increased the pharyngeal pumping rate of C. elegans in two slow-pumping mutant strains, JD21 and DA464. Moreover, the NPs increased the pumping rate over time, which sustained up to a day post-excretion. By measuring pharyngeal calcium levels, we found that the impact of Ppy NPs on the pumping rate could be mediated through calcium signaling. Thus, evaluating arrhythmic effects in C. elegans offers a simple system to test drugs and nanoparticles, as elucidated through Ppy NPs

    Monitoring mitochondrial [Ca2+] dynamics with rhod-2, ratiometric pericam and aequorin

    Get PDF
    Producción CientíficaThe dynamics of mitochondrial [Ca2+] ([Ca2+]M) plays a key role in a variety of cellular processes. The most important methods available to monitor [Ca2+]M are fluorescent dyes such as rhod-2 and specifically targeted proteins such as aequorin and pericam. However, significant discrepancies, both quantitative and qualitative, exist in the literature between the results obtained with different methods. We have made here a systematic comparison of the response of several fluorescent dyes, rhod-2 and rhod-FF, and two Ca2+-sensitive proteins, aequorin and pericam. Our results show that measurements obtained with aequorin and pericam are consistent in terms of dynamic Ca2+ changes. Instead, fluorescent dyes failed to follow Ca2+ changes adequately, especially during repetitive stimulation. In particular, measures obtained with rhod-2 or rhod-FF evidenced the previously reported Ca2+-dependent inhibition of mitochondrial Ca2+ uptake, but data obtained with aequorin or pericam under the same conditions did not. The reason for the loss of response of fluorescent dyes is unclear. Loading with these dyes produced changes in mitochondrial morphology and membrane potential, which were small and reversible at low concentrations (1–2 M), but produced large and prolonged damage at higher concentrations. In addition, cells loaded with low concentrations of rhod-2 suffered large changes in mitochondrial morphology after light excitation. Our results suggest that [Ca2+]M data obtained with these dyes should be taken with care

    Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules

    Get PDF
    Producción CientíficaThe secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to the granules to investigate [Ca2+]SG homeostasis in bovine adrenal chromaffin cells. We found that most of the intracellular aequorin chimera is present in a compartment with 50–100 lm Ca2+. Ca2+ accumulation into this compartment takes place mainly through an ATP-dependent mechanism, namely, a thapsigargin-sensitive Ca2+-ATPase. In addition, fast Ca2+ release was observed in permeabilized cells after addition of inositol 1,4,5-trisphosphate (InsP3) or caffeine, suggesting the presence of InsP3 and ryanodine receptors in the vesicular membrane. Stimulation of intact cells with the InsP3-producing agonist histamine or with caffeine also induced Ca2+ release from the vesicles, whereas acetylcholine or high-[K+] depolarization induced biphasic changes in vesicular [Ca2+], suggesting heterogeneous responses of different vesicle populations, some of them releasing and some taking up Ca2+ during stimulation. In conclusion, our data show that chromaffin cell secretory granules have the machinery required for rapid uptake and release of Ca2+, and this strongly supports the hypothesis that granular Ca2+ may contribute to its own secretion.2015-09-1
    corecore