14,431 research outputs found

    Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    Full text link
    As part of a multifaceted effort to exploit better the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high S/N time-averaged optical spectra of varying spectral resolution from 1.0 \AA\ to 8.7 \AA, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are : Teff= 29,850 ±\pm 60 K, log gg = 5.46 ±\pm 0.01, and log N(He)/N(H) = −-2.88 ±\pm 0.02. We also modeled for the first time the He II line at 1640 \AA\ from the STIS archive spectrum of the star and we found with this line an effective temperature and a surface gravity that match well the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.Comment: Accepted for publication in ApJ, April 201

    Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology

    Full text link
    We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of gg-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    Follow-up Observations of the Second and Third Known Pulsating Hot DQ White Dwarfs

    Full text link
    We present follow-up time-series photometric observations that confirm and extend the results of the significant discovery made by Barlow et al.(2008) that the Hot DQ white dwarfs SDSS J220029.08-074121.5 and SDSS J234843.30-094245.3 are luminosity variable. These are the second and third known members of a new class of pulsating white dwarfs, after the prototype SDSS J142625.71+575218.3 (Montgomery et al. 2008). We find that the light curve of SDSS J220029.08-074121.5 is dominated by an oscillation at 654.397+-0.056 s, and that the light pulse folded on that period is highly nonlinear due to the presence of the first and second harmonic of the main pulsation. We also present evidence for the possible detection of two additional pulsation modes with low amplitudes and periods of 577.576+-0.226 s and 254.732+-0.048 s in that star. Likewise, we find that the light curve of SDSS J234843.30-094245.3 is dominated by a pulsation with a period of 1044.168+-0.012 s, but with no sign of harmonic components. A new oscillation, with a low amplitude and a period of 416.919+-0.004 s, is also probably detected in that second star. We argue, on the basis of the very different folded pulse shapes, that SDSS J220029.08-074121.5 is likely magnetic, while SDSS J234843.30-094245.3 is probably not.Comment: 12 pages, 19 figures, accepted for publication in Ap

    Follow-up Studies of the Pulsating Magnetic White Dwarf SDSS J142625.71+575218.3

    Full text link
    We present a follow-up analysis of the unique magnetic luminosity-variable carbon-atmosphere white dwarf SDSS J142625.71+575218.3. This includes the results of some 106.4 h of integrated light photometry which have revealed, among other things, the presence of a new periodicity at 319.720 s which is not harmonically related to the dominant oscillation (417.707 s) previously known in that star. Using our photometry and available spectroscopy, we consider the suggestion made by Montgomery et al. (2008) that the luminosity variations in SDSS J142625.71+575218.3 may not be caused by pulsational instabilities, but rather by photometric activity in a carbon-transferring analog of AM CVn. This includes a detailed search for possible radial velocity variations due to rapid orbital motion on the basis of MMT spectroscopy. At the end of the exercise, we unequivocally rule out the interacting binary hypothesis and conclude instead that, indeed, the luminosity variations are caused by g-mode pulsations as in other pulsating white dwarfs. This is in line with the preferred possibility put forward by Montgomery et al. (2008).Comment: 11 pages in emulateApJ, 12 figures, accepted for publication in Ap

    Lexis as most local context: towards an SFL approach to lexicology

    Get PDF
    The world of lexis is vast and complex and it is generally accepted in psycholinguistics that it is represented as part of a large complex network. However, in systemic functional linguistics (SFL) modelling lexis has remained a relatively underdeveloped area of the theory. The ideas underpinning this paper stem from exploring the interface of context and lexicology, asking how SFL does and could handle lexis within the theory. Here the SFL concept of context is used to develop a similar account of lexis. The argumentation is based on the assumption that ‘knowing about’ context and 'knowing about’ lexis is contained and maintained within a networked cognitive system. The common view of the relationship between context and lexis is generally one of disambiguation, frequently through collocation. However, I argue that there is more involved than that. In this paper, I use the SFL approach to context to establish the first steps towards an analogous approach to lexicology. The conclusion offered here is that it is theoretically plausible to draw on the dimension of instantiation, in a complementary way to delicacy, in order to model lexis as most local context, where the lexeme (or lemma) is modelled as meaning potential

    Radiative levitation: a likely explanation for pulsations in the unique hot O subdwarf star SDSS J160043.6+074802.9

    Get PDF
    Context. SDSS J160043.6+074802.9 (J1600+0748 for short) is the only hot sdO star for which unambiguous multiperiodic luminosity variations have been reported so far. These rapid variations, with periods in the range from ~60 s to ~120 s, are best qualitatively explained in terms of pulsational instabilities, but the exact nature of the driving mechanism has remained a puzzle. Aims. Our primary goal is to examine quantitatively how pulsation modes can be excited in an object such as J1600+0748. Given the failure of uniform-metallicity models as well documented in the recent Ph.D. thesis of C. Rodríguez-López, we consider the effects of radiative levitation on iron as a means to boost the efficiency of the opacity-driving mechanism in models of J1600+0748. Methods. We combine high sensitivity time-averaged optical spectroscopy and full nonadiabatic calculations to carry out our study. In the first instance, this is used to estimate the location of J1600+0748 in the log g−Teffg-T_{\rm eff} plane. Given this essential input, we pulsate stellar models consistent with these atmospheric parameters. We construct both uniform-metallicity models and structures in which the iron abundance is specified by the condition of diffusive equilibrium between gravitational settling and radiative levitation. Results. On the basis of NTLE H/He synthetic spectra, we find that the target star has the following atmospheric parameters: log g = 5.93 ±\pm 0.11, TeffT_{\rm eff} = 71 070 ±\pm 2725 K, and log N(He)/N(H) = -0.85 ±\pm 0.08. This takes into account our deconvolution of the spectrum of J1600+0748 as it is polluted by the light of a main sequence companion. We confirm that uniform-metallicity stellar models with Z in the range from 0.02 to 0.10 cannot excite pulsation modes of the kind observed. On the other hand, we find that the inclusion of radiative levitation, as we implemented it, leads to pulsational instabilities in a period range that overlaps with, although it is narrower than, the observed range in J1600+0748. The excited modes correspond to low-order, low-degree p-modes. Conclusions. We infer that radiative levitation is a likely essential ingredient in the excitation physics at work in J1600+0748

    A NLTE model atmosphere analysis of the pulsating sdO star SDSS J1600+0748

    Full text link
    We started a program to construct several grids of suitable model atmospheres and synthetic spectra for hot subdwarf O stars computed, for comparative purposes, in LTE, NLTE, with and without metals. For the moment, we use our grids to perform fits on our spectrum of SDSS J160043.6+074802.9 (J1600+0748 for short), this unique pulsating sdO star. Our best fit is currently obtained with NLTE model atmospheres including carbon, nitrogen and oxygen in solar abundances, which leads to the following parameters for SDSS J1600+0748 : Teff = 69 060 +/- 2080 K, log g = 6.00 +/- 0.09 and log N(He)/N(H) = -0.61 +/- 0.06. Improvements are needed, however, particularly for fitting the available He II lines. It is hoped that the inclusion of Fe will help remedy the situation.Comment: 4 pages, 4 figures, accepted in Astrophysics and Space Science (24/02/2010), Special issue Hot sudbwarf star

    Growing Up Online: Identity, Development and Agency in Networked Girlhoods

    Full text link
    Young women\u27s digital media practices unfold within a postfeminist media landscape dominated by rapidly circulating visual representations that often promote superficial readings of human value. Meanwhile the dominant framing within educational policy and practice of digital media literacy insufficiently captures young people\u27s motivations for engaging in multimedia production, online gaming and blogging. In addition to using digital media for social purposes, and to navigate dimensions of social difference like race, class and gender, working class young women of color also use digital media to develop internal awareness of their selves. The processes of documenting the self, reflecting on the documented self, and laying claim to the intrinsic value of the self are expressions of identity, development and agency. These practices can thus be understood as projects of self-making operating on multiple levels: 1) as articulations of agency against contexts that suppress this agency; 2) as documentations of and reflections on change and growth over time; 3) as explorations of relationality and related themes of care and obligation; 4) and as a means of critiquing structures of power
    • …
    corecore