49 research outputs found

    Multi-frequency high spectral resolution observations of HCN toward the circumstellar envelope of Y CVn

    Full text link
    High spectral resolution observations toward the low mass-loss rate C-rich, J-type AGB star Y CVn have been carried out at 7.5, 13.1 and 14.0 um with SOFIA/EXES and IRTF/TEXES. Around 130 HCN and H13CN lines of bands v2, 2v2, 2v2-v2, 3v2-2v2, 3v2-v2, and 4v2-2v2 have been identified involving lower levels with energies up to ~3900 K. These lines have been complemented with the pure rotational lines J=1-0 and 3-2 of the vibrational states up to 2v2 acquired with the IRAM 30 m telescope, and with the continuum taken with ISO. We have analyzed the data with a ro-vibrational diagram and a code which models the absorption and emission of the circumstellar envelope of an AGB star. The continuum is produced by the star with a small contribution from dust grains comprising warm to hot SiC and cold amorphous carbon. The HCN abundance distribution seems to be anisotropic. The ejected gas is accelerated up to the terminal velocity (~8 km/s) from the photosphere to ~3R* but there is evidence of higher velocities (>9-10 km/s) beyond this region. In the vicinity of Y CVn, the line widths are as high as ~10 km/s, which implies a maximum turbulent velocity of 6 km/s or the existence of other physical mechanisms probably related to matter ejection that involve higher gas expansion velocities than expected. HCN is rotationally and vibrationally out of LTE throughout the whole envelope. A difference of about 1500 K in the rotational temperature at the photosphere is needed to explain the observations at 7.5 and 13-14 um. Our analysis finds a total HCN column density that ranges from ~2.1E+18 to 3.5E+18 cm^{-2}, an abundance with respect to H2 of 3.5E-05 to 1.3E-04, and a 12C/13C isotopic ratio of ~2.5 throughout the whole envelope.Comment: 24 pages, 11 figures, 3 tables, accepted for publication in A&

    The rich circumstellar chemistry of SMP LMC 11

    Get PDF
    Carbon-rich evolved stars from the asymptotic giant branch to the planetary nebula phase are characterized by a rich and complex carbon chemistry in their circumstellar envelopes. A peculiar object is the preplanetary nebula SMP LMC 11, whose Spitzer Infrared Spectrograph spectrum shows remarkable and diverse molecular absorption bands. To study howthe molecular composition in this object compares to our current understanding of circumstellar carbon chemistry, we modeled this molecular absorption. We find high abundances for a number of molecules, perhaps most notably benzene. We also confirm the presence of propyne (CH3C2H) in this spectrum. Of all the cyanopolyynes, only HC3N is evident; we can detect at best a marginal presence of HCN. From comparisons to various chemical models, we can conclude that SMP LMC 11 must have an unusual circumstellar environment (a torus rather than an outflow)

    Understanding the Chemical Complexity in Circumstellar Envelopes of C-rich AGB Stars: the Case of IRC +10216

    Get PDF
    The circumstellar envelopes of carbon-rich AGB stars show a chemical complexity that is exemplified by the prototypical object IRC +10216, in which about 60 different molecules have been detected to date. Most of these species are carbon chains of the type CnH, CnH2, CnN, HCnN. We present the detection of new species (CH2CHCN, CH2CN, H2CS, CH3CCH and C3O) achieved thanks to the systematic observation of the full 3 mm window with the IRAM 30m telescope plus some ARO 12m observations. All these species, known to exist in the interstellar medium, are detected for the first time in a circumstellar envelope around an AGB star. These five molecules are most likely formed in the outer expanding envelope rather than in the stellar photosphere. A pure gas phase chemical model of the circumstellar envelope is reasonably successful in explaining the derived abundances, and additionally allows to elucidate the chemical formation routes and to predict the spatial distribution of the detected species.Comment: 4 pages, 4 figures; to appear in Astrophysics and Space Science, special issue of "Science with ALMA: a new era for Astrophysics" conference, November, 13-17 2006, ed. R. Bachille

    Multifrequency high spectral resolution observations of HCN toward the circumstellar envelope of y Canum Venaticorum

    No full text
    24 pags., 11 figs., 2 tabs.High spectral resolution observations toward the low mass-loss rate C-rich, J-type asymptotic giant branch (AGB) star Y CVn were carried out at 7.5, 13.1, and 14.0 ÎŒm with the Echelon-cross-echelle Spectrograph mounted on the Stratospheric Observatory for Infrared Astronomy and the Texas Echelon-cross-echelle Spectrograph on the Infrared Telescope Facility. Around 130 HCN and H13CN lines of bands Îœ2, 2Îœ2, 2Îœ2 - Îœ2, 3Îœ2 - 2Îœ2, 3Îœ2 - Îœ2, and 4Îœ2 - 2Îœ2 were identified involving lower levels with energies up to ? 3900 K. These lines were complemented with the pure rotational lines J = 1-0 and 3-2 of the vibrational states up to 2Îœ2 acquired with the Institut de Radioastronomie MillimĂ©trique 30 m telescope, and with the continuum taken with Infrared Space Observatory. We analyzed the data in detail by means of a ro-vibrational diagram and with a code written to model the absorption and emission of the circumstellar envelope of an AGB star. The continuum is mostly produced by the star with a small contribution from dust grains comprising warm to hot SiC and cold amorphous carbon. The HCN abundance distribution seems to be anisotropic close to Y CVn and in the outer layers of its envelope. The ejected gas is accelerated up to the terminal velocity (? 8 km s-1) from the photosphere to ? 3R? , but there is evidence of higher velocities (? 9-10 km s-1) beyond this region. In the vicinity of the star, the line widths are as high as ? 10 km s-1, which implies a maximum turbulent velocity of 6 km s-1 or the existence of other physical mechanisms probably related to matter ejection that involve higher gas expansion velocities than expected. HCN is rotationally and vibrationally out of local thermodynamic equilibrium throughout the whole envelope. It is surprising that a difference of about 1500 K in the rotational temperature at the photosphere is needed to explain the observations at 7.5 and 13-14 ÎŒm. Our analysis finds a total HCN column density that ranges from ? 2.1 × 1018 to 3.5 × 1018 cm-2, an abundance with respect to H2 of 3.5 × 10-5 to 1.3 × 10-4, and a 12C/13C isotopic ratio of ? 2.5 throughout the whole envelope.The research leading to these results has received funding support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n. 610256 NANOCOSMOS. EJM acknowledges financial support for this work through award #06_0144 which was issued by USRA and provided by NASA. MJR and EXES observations are supported by NASA cooperative agreement 80NSSC19K1701. MSG thanks Spanish MCIN through grant AYA2016-78994-P. Based in part on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NNA17BF53C, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration. This work is based on observations carried out under project numbers 155-16 and 048-17 with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administratio

    Charge Transport by Light-Activated Rhodopsins Determined by Electrophysiological Recordings

    No full text
    Electrophysiological experiments are required to determine the ion transport properties of light-activated currents from microbial rhodopsin expressing cells. The recordings set the quantitative basis for correlation with spectroscopic data and for understanding of channel gating, ion transport vectoriality, or ion selectivity. This chapter focuses on voltage-clamp recordings of channelrhodopsin-2-expressing cells, and it will describe different illumination protocols that reveal the kinetic properties of gating. While the opening and closing reaction is determined from a single turnover upon a short laser flash, desensitization of the light-gated currents is studied under continuous illumination. Recovery from the desensitized state is probed after prolonged illumination with a subsequent light activation upon different dark intervals. Compiling the experimental data will define a minimum number of states in kinetic schemes used to describe the light-gated currents in channelrhodopsins, and emphasis will be given on how to correlate the results with the different time-resolved spectroscopic experiments

    Discovery of methyl silane and confirmation of silyl cyanide in IRC +10216

    No full text
    We report the discovery in space of methyl silane, CH3SiH3, from observations of ten rotational transitions between 80 and 350 GHz (Ju from 4 to 16) with the IRAM 30 m radio telescope. The molecule was observed in the envelope of the C-star IRC +10216. The observed profiles and our models for the expected emission of methyl silane suggest that the it is formed in the inner zones of the circumstellar envelope, 1−40 R∗, with an abundance of (0.5−1) × 10-8 relative to H2. We also observed several rotational transitions of silyl cyanide (SiH3CN), confirming its presence in IRC +10216 in particular, and in space in general. Our models indicate that silyl cyanide is also formed in the inner regions of the envelope, around 20 R∗, with an abundance relative to H2 of 6 × 10-10. The possible formation mechanisms of both species are discussed. We also searched for related chemical species but only upper limits could be obtained
    corecore