44 research outputs found

    Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro04-6790

    Get PDF
    Rationale: Accumulating evidence suggests a potential role for the 5-HT6 receptor in cognitive function and the potential use of 5-HT6 receptor antagonists in the treatment of learning and memory disorders. Objectives: The aim of the current study was to investigate the effect of the selective 5-HT6 receptor antagonist, Ro04-6790, on both the performance of normal adult rats and restoration of a pharmacological disruption of memory function produced by the non-selective muscarinic receptor antagonist, scopolamine, or the dopamine D2 receptor antagonist, raclopride, in a rodent model of recognition memory. Methods: Passive, perceptually based, recognition memory was assessed using a novel object discrimination task. Following habituation to an arena, rats were presented with two identical objects during trial 1 (T1) and a novel and familiar object during trial 2 (T2). The time spent exploring the two objects in each trial was measured and novel object discrimination assessed in T2. Results: In the absence of drug all rats spent an equal time exploring the two identical objects in T1 but more time exploring the novel object in T2. Scopolamine (but not N-methylscopolamine) and raclopride both produced a dose-dependent reduction in novel object discrimination whilst the 5-HT6 receptor antagonist, Ro04-6790, had no effect on discrimination when given alone but completely reversed the scopolamine- but not the raclopride-induced deficit. Conclusion: This study demonstrates that acute administration of Ro04-6790 reverses a cholinergic but not a dopaminergic deficit in a rodent model of recognition memory and provides further support for a role of the 5-HT6 receptor in the regulation of cognitive functio

    Caffeine alters the behavioural and body temperature responses to mephedrone without causing long-term neurotoxicity in rats

    Get PDF
    Administration of caffeine with 3,4-methylenedioxymethamphetamine (MDMA) alters the pharmacological properties of MDMA in rats. The current study examined whether caffeine alters the behavioural and neurochemical effects of mephedrone, which has similar psychoactive effects to MDMA. Rats received either i.p. saline, mephedrone (10mg/kg), caffeine (10mg/kg) or combined caffeine and mephedrone twice weekly on consecutive days for three weeks. Locomotor activity (days 1 and 16), novel object discrimination (NOD, day two), elevated plus maze (EPM, day eight) exploration, rectal temperature changes (day nine) and prepulse inhibition of acoustic startle (PPI, day 15) response were assessed. Seven days after the final injection, brain regions were collected for measurement of 5-hydroxytryptamine (5-HT), dopamine and their metabolites. Combined caffeine and mephedrone further enhanced the locomotor response observed following either drug administered alone, and converted mephedrone-induced hypothermia to hyperthermia. Co-administration also abolished mephedrone-induced anxiogenic response on the EPM but had no effect on NOD or PPI. Importantly, no long-term neurotoxicity was detected following repeated mephedrone alone or when co-administered with caffeine. In conclusion, the study suggests a potentially dangerous effect of concomitant caffeine and mephedrone, and highlights the importance of taking polydrug use into consideration when investigating the acute adverse effect profile of popular recreational drugs

    Role of the anterior cingulate cortex in the retrieval of novel object recognition memory after a long delay

    Get PDF
    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20 min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory

    The dopamine D3-preferring D2/D3 dopamine receptor partial agonist, cariprazine, reverses behavioral changes in a rat neurodevelopmental model for schizophrenia

    Get PDF
    Current antipsychotic medication is largely ineffective against the negative and cognitive symptoms of schizophrenia. One promising therapeutic development is to design new molecules that balance actions on dopamine D2 and D3 receptors to maximise benefits and limit adverse effects. This study used two rodent paradigms to investigate the action of the dopamine D3-preferring D3/D2 receptor partial agonist cariprazine. In adult male rats, cariprazine (0.03-0.3mg/kg i.p.), and the atypical antipsychotic aripiprazole (1-3mg/kg i.p.) caused dose-dependent reversal of a delay-induced impairment in novel object recognition (NOR). Treating neonatal rat pups with phencyclidine (PCP) and subsequent social isolation produced a syndrome of behavioral alterations in adulthood including hyperactivity in a novel arena, deficits in NOR and fear motivated learning and memory, and a reduction and change in pattern of social interaction accompanied by increased ultrasonic vocalisations (USVs). Acute administration of cariprazine (0.1 and 0.3mg/kg) and aripiprazole (3mg/kg) to resultant adult rats reduced neonatal PCP-social isolation induced locomotor hyperactivity and reversed NOR deficits. Cariprazine (0.3mg/kg) caused a limited reversal of the social interaction deficit but neither drug affected the change in USVs or the deficit in fear motivated learning and memory. Results suggest that in the behavioral tests investigated cariprazine is at least as effective as aripiprazole and in some paradigms it showed additional beneficial features further supporting the advantage of combined dopamine D3/D2 receptor targeting. These findings support recent clinical studies demonstrating the efficacy of cariprazine in treatment of negative symptoms and functional impairment in schizophrenia patients

    Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone

    Get PDF
    The psychoactive effects of mephedrone are commonly compared to those of 3,4-methylenedioxymethamphetamine, but because of a shorter duration of action users often employ repeated administration to maintain its psychoactive actions. This study examined the effects of repeated mephedrone administration on locomotor activity, body temperature and striatal dopamine and 5-hydroxytryptamine (5-HT) levels, and the role of dopaminergic and serotonergic neurons in these responses. Adult male Lister hooded rats received three injections of vehicle (1ml/kg, i.p.) or mephedrone HCl (10mg/kg) at 2h intervals for radiotelemetry (temperature and activity) or microdialysis (dopamine and 5-HT) measurements. Intracerebroventricular pre-treatment (21 to 28 days earlier) with 5,7-dihydroxytryptamine (5,7-DHT, 150μg) or 6-hydroxydopamine (6-OHDA, 300μg) was used to examine the impact of 5-HT or dopamine depletion on mephedrone-induced changes in temperature and activity. A final study examined the influence of i.p. pre-treatment (-30min) with the 5-HT1A receptor antagonist WAY-100635 (0.5mg/kg), 5-HT1B receptor antagonist GR 127935 (3mg/kg) or the 5-HT7 receptor antagonist SB-258719 (10mg/kg) on mephedrone-induced changes in locomotor activity and rectal temperature. Mephedrone caused rapid-onset hyperactivity, hypothermia (attenuated on repeat dosing), and increased striatal dopamine and 5-HT release following each injection. Mephedrone-induced hyperactivity was attenuated by 5-HT depletion and 5-HT1B receptor antagonism, whereas the hypothermia was completely abolished by 5-HT depletion and lessened by 5-HT1A receptor antagonism. These findings suggest that stimulation of central 5-HT release and/or inhibition of 5-HT reuptake play a pivotal role in both the hyperlocomotor and hypothermic effects of mephedrone, which are mediated in part via 5-HT1B and 5-HT1A receptors

    Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone

    Get PDF
    The psychoactive effects of mephedrone are commonly compared to those of 3,4-methylenedioxymethamphetamine, but because of a shorter duration of action users often employ repeated administration to maintain its psychoactive actions. This study examined the effects of repeated mephedrone administration on locomotor activity, body temperature and striatal dopamine and 5-hydroxytryptamine (5-HT) levels, and the role of dopaminergic and serotonergic neurons in these responses. Adult male Lister hooded rats received three injections of vehicle (1ml/kg, i.p.) or mephedrone HCl (10mg/kg) at 2h intervals for radiotelemetry (temperature and activity) or microdialysis (dopamine and 5-HT) measurements. Intracerebroventricular pre-treatment (21 to 28 days earlier) with 5,7-dihydroxytryptamine (5,7-DHT, 150μg) or 6-hydroxydopamine (6-OHDA, 300μg) was used to examine the impact of 5-HT or dopamine depletion on mephedrone-induced changes in temperature and activity. A final study examined the influence of i.p. pre-treatment (-30min) with the 5-HT1A receptor antagonist WAY-100635 (0.5mg/kg), 5-HT1B receptor antagonist GR 127935 (3mg/kg) or the 5-HT7 receptor antagonist SB-258719 (10mg/kg) on mephedrone-induced changes in locomotor activity and rectal temperature. Mephedrone caused rapid-onset hyperactivity, hypothermia (attenuated on repeat dosing), and increased striatal dopamine and 5-HT release following each injection. Mephedrone-induced hyperactivity was attenuated by 5-HT depletion and 5-HT1B receptor antagonism, whereas the hypothermia was completely abolished by 5-HT depletion and lessened by 5-HT1A receptor antagonism. These findings suggest that stimulation of central 5-HT release and/or inhibition of 5-HT reuptake play a pivotal role in both the hyperlocomotor and hypothermic effects of mephedrone, which are mediated in part via 5-HT1B and 5-HT1A receptors

    Down-regulation of hippocampal genes regulating dopaminergic, GABAergic and glutamatergic function following combined neonatal phencyclidine and post-weaning social isolation of rats as a neurodevelopmental model for schizophrenia

    Get PDF
    Background: Dysfunction of dopaminergic, GABAergic and glutamatergic function underlies many core symptoms of schizophrenia. Combined neonatal injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP) and post-weaning social isolation of rats produces a behavioral syndrome with translational relevance to several core symptoms of schizophrenia. This study uses DNA microarray to characterise alterations in hippocampal neurotransmitter-related gene expression and examines the ability of the sodium channel blocker, lamotrigine, to reverse behavioral changes in this model. Methods: Fifty-four male Lister-hooded rat pups either received phencyclidine (PCP, 10 mg/kg, s.c.), on post-natal day (PND) 7, 9 and 11 before being weaned on PND 23 into separate cages (isolation, PCP-SI, n=31), or vehicle injection and group-housing (2-4 per cage, V-GH, n=23) from weaning. The effect of lamotrigine on locomotor activity, novel object recognition, and prepulse inhibition of acoustic startle was examined (PND60-75) and drug-free hippocampal gene expression on PND70. Results: Acute lamotrigine (10-15mg/kg i.p.) reversed the hyperactivity and novel object recognition impairment induced by PCP-SI but had no effect on the prepulse inhibition deficit. Microarray revealed small but significant down-regulation of hippocampal genes involved in glutamate metabolism, dopamine neurotransmission and GABA receptor signalling, and in specific schizophrenia-linked genes, including PVALB and GAD67, in PCP-SI rats which resemble changes reported in schizophrenia. Conclusions: Findings indicate that alterations in dopamine neurotransmission, glutamate metabolism and GABA signalling may contribute to some of the behavioral deficits observed following PCP-SI, and that lamotrigine may have some utility as an adjunctive therapy to improve certain cognitive deficits symptoms in schizophrenia

    Oxytocin attenuates phencyclidine hyperactivity and increases social interaction and nucleus accumben dopamine release in rats

    Get PDF
    The pituitary neuropeptide oxytocin promotes social behavior, and is a potential adjunct therapy for social deficits in schizophrenia and autism. Oxytocin may mediate pro-social effects by modulating monoamine release in limbic and cortical areas, which was investigated herein using in vivo microdialysis, after establishing a dose that did not produce accompanying sedative or thermoregulatory effects that could concomitantly influence behavior. The effects of oxytocin (0.03–0.3 mg/kg subcutaneous) on locomotor activity, core body temperature, and social behavior (social interaction and ultrasonic vocalizations) were examined in adult male Lister-hooded rats, using selective antagonists to determine the role of oxytocin and vasopressin V1a receptors. Dopamine and serotonin efflux in the prefrontal cortex and nucleus accumbens of conscious rats were assessed using microdialysis. 0.3 mg/kg oxytocin modestly reduced activity and caused hypothermia but only the latter was attenuated by the V1a receptor antagonist, SR49059 (1 mg/kg intraperitoneal). Oxytocin at 0.1 mg/kg, which did not alter activity and had little effect on temperature, significantly attenuated phencyclidine-induced hyperactivity and increased social interaction between unfamiliar rats without altering the number or pattern of ultrasonic vocalizations. In the same rats, oxytocin (0.1 mg/kg) selectively elevated dopamine overflow in the nucleus accumbens, but not prefrontal cortex, without influencing serotonin efflux. Systemic oxytocin administration attenuated phencyclidine-induced hyperactivity and increased pro-social behavior without decreasing core body temperature and selectively enhanced nucleus accumbens dopamine release, consistent with activation of mesocorticolimbic circuits regulating associative/reward behavior being involved. This highlights the therapeutic potential of oxytocin to treat social behavioral deficits seen in psychiatric disorders such as schizophrenia

    Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management

    Get PDF
    © 2020, The Author(s). Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200mg/kg) and ORG24598 (0.63–5mg/kg), the agonists, glycine (40–800mg/kg), and D-serine (10–160mg/kg) and the partial agonists, S18841 (2.5mg/kg s.c.) and D-cycloserine (2.5–40mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20mg/kg), and the glycine modulatory site antagonist, L701,324 (10mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10mg/kgs.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired

    Hippocampal neural disinhibition causes attentional and memory deficits

    Get PDF
    Subconvulsive hippocampal neural disinhibition, that is reduced GABAergic inhibition, has been implicated in neuropsychiatric disorders characterized by attentional and memory deficits, including schizophrenia and age-related cognitive decline. Considering that neural disinhibition may disrupt both intra-hippocampal processing and processing in hippocampal projection sites, we hypothesized that hippocampal disinhibition disrupts hippocampus-dependent memory performance and, based on strong hippocampo-prefrontal connectivity, also prefrontal-dependent attention. In support of this hypothesis, we report that acute hippocampal disinhibition by microinfusion of the GABA-A receptor antagonist picrotoxin in rats impaired hippocampus-dependent everyday-type rapid place learning performance on the watermaze delayed-matching-to-place test and prefrontal-dependent attentional performance on the 5-choice-serial-reaction-time test, which does not normally require the hippocampus. For comparison, we also examined psychosis-related sensorimotor effects, using startle/prepulse inhibition (PPI) and locomotor testing. Hippocampal picrotoxin moderately increased locomotion and slightly reduced startle reactivity, without affecting PPI. In vivo electrophysiological recordings in the vicinity of the infusion site showed that picrotoxin mainly enhanced burst firing of hippocampal neurons. In conclusion, hippocampal neural disinhibition disrupts hippocampus-dependent memory performance and also manifests through deficits in not normally hippocampus-dependent attentional performance. These behavioral deficits may reflect a disrupted control of burst firing, which may disrupt hippocampal processing and cause aberrant drive to hippocampal projection sites
    corecore