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Abstract 

Subconvulsive hippocampal neural disinhibition, i.e. reduced GABAergic inhibition, has been 

implicated in neuropsychiatric disorders characterized by attentional and memory deficits, including 

schizophrenia and age-related cognitive decline. Considering that neural disinhibition may disrupt 

both intra-hippocampal processing and processing in hippocampal projection sites, we hypothesized 

that hippocampal disinhibition disrupts hippocampus-dependent memory performance and, based 

on strong hippocampo-prefrontal connectivity, also prefrontal-dependent attention. In support of 

this hypothesis, we report that acute hippocampal disinhibition by microinfusion of the GABA-A 

receptor antagonist picrotoxin in rats impaired hippocampus-dependent everyday-type rapid place 

learning performance on the watermaze delayed-matching-to-place test and prefrontal-dependent 

attentional performance on the 5-choice-serial-reaction-time test, which does not normally require 

the hippocampus. For comparison, we also examined psychosis-related sensorimotor effects, using 

startle/prepulse inhibition (PPI) and locomotor testing. Hippocampal picrotoxin moderately 

increased locomotion and slightly reduced startle reactivity, without affecting PPI. In vivo 

electrophysiological recordings in the vicinity of the infusion site showed that picrotoxin mainly 

enhanced burst firing of hippocampal neurons. In conclusion, hippocampal neural disinhibition 

disrupts hippocampus-dependent memory performance and also manifests through deficits in not 

normally hippocampus-dependent attentional performance. These behavioral deficits may reflect a 

disrupted control of burst firing, which may disrupt hippocampal processing and cause aberrant 

drive to hippocampal projection sites. 
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Introduction 

Attentional and memory deficits cause substantial functional disability and are a major treatment 

challenge in neuropsychiatric disorders, including schizophrenia and age-related cognitive decline 

(Millan et al. 2012). GABAergic inhibitory neurotransmission is important to shape brain activity, 

and subconvulsive cortico-hippocampal neural disinhibition, i.e. impaired GABAergic inhibition, 

has been implicated in neuropsychiatric disorders and associated cognitive deficits (Marin 2012). 

Here, we focus on hippocampal neural disinhibition, aiming to examine its causal contribution to 

attentional and memory deficits. Hippocampal neural disinhibition has emerged as a key 

pathophysiological feature of schizophrenia, based on consistent findings of  metabolic overactivity 

at rest and altered post-mortem markers of GABA function in the hippocampus of schizophrenia 

patients (Lisman et al. 2008; Heckers and Konradi 2014; Ruzicka et al. 2015). Hippocampal GABA 

dysfunction has also been implicated in other cognitive disorders, notably age-related cognitive 

decline, although the evidence is more preliminary than the evidence implicating GABA 

dysfunction in schizophrenia (Huang and Mucke 2012; Stanley et al. 2012; Nava-Mesa et al. 2014).   

Neural disinhibition, by disrupting balanced neural activity within the disinhibited region, 

may impair local cognitive processing. This has recently been established for prefrontal GABA 

dysfunction (Gruber et al. 2010; Enomoto et al. 2011; Paine et al. 2011; Pehrson et al. 2013; Pezze 

et al. 2014; Paine et al. 2015; Tse et al. 2015), and there is also evidence linking hippocampal neural 

disinhibition and overactivity to impaired hippocampus-dependent memory performance (Koh et al. 

2010; Murray et al. 2011; Andrews-Zwilling et al. 2012; Bakker et al. 2012 ; Caputi et al. 2012; 

Gilani et al. 2014; Lovett-Barron et al. 2014). Moreover, regional disinhibition, by causing aberrant 

drive of projections, may disrupt neural activity and cognitive processing in distal sites. Consistent 

with distal effects, rodent studies show that hippocampal disinhibition and overactivity cause 

dopamine system upregulation and associated behavioral effects (including locomotor 

hyperactivity) (Bast et al. 2001; Bast and Feldon 2003; Lodge and Grace 2011; Gilani et al. 2014), 

which – given the strong link between dopamine and psychosis (Howes and Kapur 2009) – may 
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explain the consistent correlation of hippocampal overactivity and psychosis in schizophrenia 

(Liddle et al. 1992; Schobel et al. 2009; Heckers and Konradi 2014). Considering local and distal 

effects, we hypothesized that hippocampal neural disinhibition impairs hippocampus-dependent 

memory and, based on strong hippocampo-prefrontal connectivity, also prefrontal-dependent 

cognitive function, including attention (Bast 2011). This hypothesis would explain recent imaging 

findings that intrinsic hippocampal overactivity correlates with memory and attentional deficits in 

schizophrenia (Tregellas et al. 2014). 

To test if hippocampal neural disinhibition disrupts hippocampus-dependent memory and 

prefrontal-dependent attention, we combined hippocampal neural disinhibition by local 

microinfusion of the GABA-A antagonist picrotoxin (Bast et al. 2001; Pezze et al. 2014) with 

translational tests of clinically relevant cognitive deficits in rats. Infusions targeted temporal (also 

referred to as ventral) to intermediate hippocampus, because this part of the hippocampus features 

strong hippocampo-prefrontal connectivity and corresponds to human anterior hippocampus, which 

has been implicated in schizophrenia (Bast 2011). To test for attentional deficits, we used the 5-

choice-serial-reaction-time (5CSRT) task, which has high validity to measure prefrontal-dependent 

sustained attention, as impaired in several cognitive disorders, including schizophrenia and age-

related cognitive decline (Chudasama and Robbins 2006; Lustig et al. 2013; Romberg et al. 2013), 

and requires balanced prefrontal activity (Pezze et al. 2014). To test for memory deficits, we used 

the watermaze delayed-matching-to-place (DMP) task, which requires rats to learn rapidly (within 

one trial) new place information every day and is highly dependent on hippocampal function (Steele 

and Morris 1999; Bast et al. 2009; Pezze and Bast 2012), including function of the temporal to 

intermediate hippocampus (presumably because these regions feature functional connectivity to 

frontal and subcortical sites necessary to translate hippocampal learning into performance; Bast et 

al. 2009; Bast 2011). The task resembles the everyday problem of remembering new places and 

routes, and similar human tests using virtual or real-space analogues of the watermaze reveal 

marked deficits in schizophrenia and age-related cognitive decline (Hort et al. 2007; Fajnerova et al. 
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2014). For comparison and to identify behaviorally effective doses without gross sensorimotor 

effects, we first examined effects on locomotor activity and startle prepulse inhibition (PPI), with 

locomotor hyperactivity and PPI disruption also being widely-used psychosis-related indices (Bast 

and Feldon 2003; Swerdlow et al. 2008). To examine neural changes caused by hippocampal 

GABA dysfunction, we conducted in vivo electrophysiological recordings in the vicinity of the 

infusion site (Pezze et al. 2014). Of particular interest were changes in hippocampal burst firing, 

which has been proposed to be important for hippocampus-dependent memory function (Takahashi 

and Magee 2009; Xu et al. 2012) and for driving post-synaptic targets (Lisman 1997) and has 

recently been suggested to depend critically on local GABAergic inhibition, with opto- and 

pharmacogenetic silencing of GABAergic interneurons enhancing bursting (Lovett-Barron et al. 

2012; Royer et al. 2012). 

 

 

MATERIALS AND METHODS 

Animals 

Adult male Lister hooded rats (Charles River, UK) were used for all studies: 31 for the 

sensorimotor experiments (2 to 3 months at surgery), 11 for the 5-CSRT experiment (6 to 7 months 

at surgery), 14 for the watermaze experiments (2 to 3 months at surgery) and 15 for the 

electrophysiology (2 to 3 months at time of the acute experiment).  Rats were housed in groups of 

four in two level ‘Double Decker’ cages (462 mm X 403 mm X 404 mm; Tecniplast, UK) under 

temperature- and humidity- controlled (21±1.5°C; 50±8%) conditions and alternating 12h light dark 

cycle (lights on at 0700 h). They had ad libitum access to water and food (Teklad Global 18% 

Protein Rodent Diet 2018, Harlan, UK), except for the rats used in the 5-CSRT experiment, which 

were kept on a restricted diet to keep their weight at about 85% of their projected bodyweight 

during behavioral testing. All rats were habituated to handling by the experimenters before the start 
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of any experimental procedures. All procedures were conducted in accordance with the 

requirements of the United Kingdom (UK) Animals (Scientific Procedures) Act 1986.  

 

Cannula implantation for behavioral studies 

Using stereotactic procedures described in detail previously (Pezze et al. 2014), guide cannulae 

(stainless steel, 26-gauge, protruding 8.5 mm from a plastic pedestal; Plastics One, Bilaney, UK) 

with stylets (stainless steel, 33 gauge; Plastic Ones, Bilaney, UK) protruding 0.5 mm were 

implanted into the temporal to intermediate hippocampus, with the stylets aiming at (in mm): 5.2 

posterior to bregma, ± 4.8 lateral from midline, and 6.5 ventral from dura. These coordinates were 

adapted from our previous study in Wistar rats (Bast et al. 2001) based on pilot surgeries. After 

surgery, rats were given at least 4 days of recovery before any testing. Throughout the recovery 

period, rats underwent daily health checks and were habituated to the manual restraint necessary for 

the drug microinfusions.  

At the end of the experiments, brains were perfusion-fixated and processed histologically, as 

described previously (Pezze et al. 2014), to verify placements of the infusion cannulae and map 

them onto coronal sections adapted from a rat brain stereotaxic atlas (Paxinos and Watson 1998). 

 

Microinfusions for behavioural studies 

Rats were manually restrained during the infusions. Stylets were replaced by infusion cannulae 

(protruding 0.5 mm from tip of guide cannulae, stainless steel, 33 gauge; Plastic Ones, Bilaney, 

UK), which were connected via flexible polyethylene tubing to 5-µl SGE microsyringes mounted 

on a microinfusion pump (sp200IZ, World Precision Instruments, UK). A volume of 0.5 µl/side of 

0.9 % sterile saline (as control) or of a solution of picrotoxin (C30H34O13; Sigma-Aldrich, UK) in 

saline (25-150 ng/0.5 µl/side, depending on experiment) was then infused bilaterally over 1 min. 

The picrotoxin solutions were prepared on the day of the experiments from frozen aliquots 

containing 150 ng/0.5 µl. Movement of an air bubble, trapped in the tubing, was used to monitor the 
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infusion flow. Infusion cannulae were withdrawn and replaced by stylets 60 s after completion of 

the infusion to allow for absorption of the infusion bolus. Behavioral testing started immediately 

after infusions had been completed and stylets reinserted, except for sensorimotor testing, for which 

rats were infused in pairs, one after the other, resulting in half of the rats having a delay of about 3-5 

min between the end of the infusion and the start of testing.  

In the 5CSRT and watermaze experiments, mock infusions were performed on all rats after 

pretraining to asymptotic performance levels and before the actual infusion experiments. Mock 

infusions served to habituate the rats to the infusion procedure and to verify that the infusion 

procedure itself does not interfere with task performance. Mock infusions were conducted in the 

same way as real infusions, except that the pump was not connected to the syringes.  

The picrotoxin doses used in the present study were subconvulsive, as we aimed to investigate 

the neurocognitive sequels of neural disinhibition relevant to neuropsychiatric disorders, not 

epileptic seizures. As in our previous studies involving hippocampal picrotoxin infusions (Bast et 

al. 2001), observations of the rats following infusions and between infusion days, did not reveal 

infusion-induced motor convulsions or more subtle indicators of seizure development, such as facial 

twitches, tremor, movement arrest or wet-dog shakes, which may result from higher doses of 

GABA antagonists (Bragin et al. 2009). Furthermore, our electrophysiological studies did not 

indicate electrophysiological seizure signs (see below).  

 

Startle, PPI and locomotor activity testing 

We began by examining the effects of hippocampal picrotoxin on three basic sensorimotor process, 

the acoustic startle response and prepulse inhibition (PPI) of the acoustic startle response and open-

field locomotor activity, similar to our previous studies in Wistar rats (Bast et al. 2001). First, these 

experiments allowed us to confirm suitable picrotoxin doses for use in the Lister hooded strain that 

were behaviorally effective without causing gross sensorimotor impairment. Second, disrupted PPI 

of the acoustic startle response and locomotor hyperactivity are widely-used psychosis-related 
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indices in rodent studies (Bast and Feldon 2003; Arguello and Gogos 2006). PPI of the acoustic 

startle response refers to the reduction of the startle response to an intense acoustic pulse by an 

immediately preceding weaker, non-startling, prepulse. It may reflect sensorimotor gating 

processes, which are disrupted in schizophrenia and restored by antipsychotic medication (even 

though PPI disruption is not specific to schizophrenia and the relation of PPI deficits to symptoms 

is not clear, Swerdlow et al. 2008). Startle, PPI and locomotor tests were conducted as described in 

detail previously, using between-subjects designs (Pezze et al. 2014). 

Nineteen rats, implanted with hippocampal cannulae, were used to test the effects of 

hippocampal picrotoxin on startle and PPI (test session lasted 23 min, including 5 min of 

acclimatization). On day 1, startle and PPI were measured without infusion. On day 2, startle and 

PPI were measured following infusions of saline (n=9) or 150 ng /side picrotoxin (n=10). On Day 3, 

rats were re-tested without infusion as on Day 1. 

Twenty-nine pre-implanted rats were used for locomotor testing. The same rats used for the 

startle/PPI experiments (except for two rats which fell ill) were used, one week later, to compare the 

locomotor effects of hippocampal infusion of saline (n = 6) and of 100 ng (n=5) or 150 ng 

picrotoxin (n = 6) (i.e., these rats received a total of two infusions, with some rats receiving the 

same infusion as during the startle/PPI experiment and others receiving a different infusion, so as to 

match the new infusion groups with respect to their infusion history). Consistent with previous 

experiments in Wistar rats (Bast et al. 2001), both 100 and 150 ng/side of picrotoxin increased 

locomotor activity. Therefore, we also examined the effects of lower doses, using an additional 12 

experimentally naïve rats, receiving either saline (n=4), 50 ng (n=4) or 75 ng (n=4) picrotoxin. On 

day 1, baseline locomotor activity was tested for 1 h. On day 2, following 30 min of pre-infusion 

testing, rats received infusions of saline (n=10), 50 ng (n=4), 75 ng (n=4), 100 ng (n=5) or 150 ng 

(n=6) picrotoxin and an additional 60 min of post-infusion testing. On day 3, rats were re-tested 

without infusions as on day 1. 
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The purpose of locomotor and startle/PPI testing without infusion on day 1 and 3 was to 

verify that there were no baseline differences in dependent measures between groups before 

infusions, and that any group differences were reflecting temporary infusion-induced changes. None 

of the sensorimotor measures showed any group differences on day 1 and 3 (data not shown). 

Data were analyzed using ANOVA with infusion group as between-subjects factor and 10-

min bins (locomotor activity), test block (startle), or prepulse intensity (PPI) as within-subjects 

factor. 

 

5-choice-serial-reaction-time (5-CSRT) experiment 

The 5CSRT test requires rats to sustain and divide attention across a row of five apertures to detect 

brief light flashes occurring in random order in one of the apertures and to respond to these flashes 

by nose-poking into the correct hole to receive food reward. Procedures were described in detail 

previously (Pezze et al. 2014). 

Test boxes had five holes on one side and a food magazine on the opposite wall. Nose pokes 

into holes and magazine were detected using infrared beams. Test sessions started with delivery of 

one food pellet. Rats triggered a trial by nose-poking into the magazine. The trial started after a 5 s 

delay (inter-trial interval; ITI), with a light appearing in one of the holes for a 0.5 s stimulus 

duration. If the rat nose-poked into that hole within a 5 s limited hold period (correct response), a 

reward pellet was released into the magazine. Responses in one of the unlit four holes (incorrect 

response), failure to respond within the limited hold period (omission), and responses during the ITI 

(premature response) were punished by a 5-s time-out period with the house light turned off. 

Repeated responses in the same hole (correct or incorrect) were recorded as perseverative 

responses. A new trial started 5 s after the rat entered the food magazine, either to collect the reward 

or after the 5-s time-out. Test sessions consisted of 100 trials or lasted 30 min, whichever was 

shorter. Each rat had only one test session per day.  
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The main measures of attention were: % accuracy ([correct responses / (correct responses + 

incorrect responses)] * 100%), reflecting errors of commission due to faulty stimulus detection, and 

% omissions ([omissions / (correct responses + incorrect responses + omissions)] * 100%), which 

may reflect failure to detect the stimulus. As measures of response control, we analyzed % 

premature responses ([premature responses / (correct responses + incorrect responses + omissions + 

premature responses)] * 100 %) and % perseverative responses ([perseverative responses / (correct 

responses + incorrect responses + omissions + premature responses)] * 100 %), reflecting failure to 

withhold prepotent, but inappropriate, responses. Additional measures, to control for non-specific 

motor and/or motivational changes, were: number of trials, correct response latency (mean duration 

between stimulus onset and nose poke in correct hole), and collect latency (mean duration between 

nose poke in correct hole and collection of reward in food magazine). 

Rats were pretrained before and retrained after surgery to perform at stable and high 

performance levels (at least 80 correct trials, with 80% accuracy and 20% omissions) for at least 

five consecutive days. Rats then underwent four days of testing combined with mock infusions, 

with half of the rats receiving mock infusions on day 2 and the other half on day 4. Mock infusions 

did not affect task performance (data not shown). Eleven rats were used to test the effects of 

hippocampal picrotoxin infusions in within-subjects studies, with testing order of drug doses 

counterbalanced using a Latin-square design and each infusion day preceded by a testing day 

without infusions (to assess normal performance off-drug and avoid carry-over effects). We tested 

two dose ranges, each including saline plus two picrotoxin doses. The lower dose range included 

saline, 25 and 75 ng picrotoxin per side (chosen because they were at the low end of doses causing 

moderate locomotor hyperactivity in our sensorimotor experiments). Testing this dose range in the 

first few rats indicated no substantial effect on 5CSRT performance. Therefore, we included an 

additional higher dose range, including saline, 75 ng and 150 ng per side (75 ng dose was included 

in both ranges as an internal control for reproducibility of drug effects). Of the 11 rats, 9 completed 

both dose ranges (receiving a total of six infusions, including two saline infusions), with testing at 
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the two dose ranges separated by a minimum of 4 days of testing without infusion (to re-establish a 

stable baseline) and testing order counterbalanced across rats. In addition, one rat each completed 

only the higher or lower dose range (because of illness). Thus, each dose range was tested in 10 

rats. Data were analyzed separately for both dose ranges by ANOVA, using drug dose as within-

subjects factor, followed by post-hoc comparisons using Fisher’s LSD test (which provides good 

power and, if preceded by ANOVA and if only three means are compared as in the present study, 

ensures that the familywise type-1 error rate is equal or lower than the rate for the individual 

comparison; Levin et al. 1994). 

 

Watermaze delayed-matching-to-place (DMP) experiment 

The watermaze DMP task requires rats to learn rapidly, within one trial, the daily changing place of 

a hidden platform in order to escape efficiently from a circular pool of water (Steele and Morris 

1999). The task, especially in our new modification measuring search preference on probe trials to 

assess one-trial place memory, is highly sensitive to disruption of hippocampal function (Bast et al. 

2009; Pezze and Bast 2012). Procedures were adapted from our previous study examining the 

effects of hippocampal drug microinfusions on the watermaze DMP test (Pezze and Bast 2012). 

 

Apparatus 

The watermaze consisted of a 2-m diameter white fiberglass pool, which was 60 cm high and filled 

with water up to 20 cm below the pool edge. It was positioned in a well-lit (200 lux) room, which 

contained a variety of extra-maze visual cues visible from the water surface, so as to aid spatial 

orientation, including high-contrast wall posters and three-dimensional visual cues (cupboards, a 

traffic cone, lampshades and boxes hanging from the wall) arranged at various distances from the 

pool. Four points, equally spaced along the circumference of the pool (North (N), East (E), South 

(S) and West (W); arbitrarily defined), served as start positions. The water was made opaque with 

latex (200ml; Febflor Latex Liquid, Everbuild Building Products Ltd, Leeds, UK). During testing, 
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water temperature was maintained at 25 ± 1 °C.  The rats’ only way to escape from the water was 

via a 12-cm diameter escape platform, which was hidden from the rats’ sight 1-2 cm below the 

water surface 

We used a so-called “Atlantis platform” (Spooner et al. 1994), which can be withheld at >20 

cm below the water surface, inaccessible for the rats, by a computer-controlled electromagnet for a 

predetermined time, before rising to its normal position (Med Associates Inc., St. Albans, Vermont, 

US). This allowed us to run rewarded probe trials during which the rats’ search preference for the 

zone containing the platform location was first monitored for 60 s before the platform was made 

available to reinforce spatially focused searching. 

To record the rats’ swimming behavior, a digital camera was mounted above the watermaze, 

transmitting images to a PC in the adjacent room. The PC ran a program for video capture of the 

trials (Pinnacle Studio 12, Pinnacale Systems, Corel Corporation, Ottawa, Ontario, UK) and the 

Ethovision tracking software (Version XT 7, Noldus Technology, Wageningen, The Netherlands) 

that digitizes the rats’ paths and can compute various behavioral measures, including latencies and 

path lengths to reach the platform location, and times in different areas of the pool. 

 

General testing procedure 

Rats received 4 trials a day. The platform was hidden in a new place on trial 1 of each day, 

remaining in this place for trials 2-4, on which rats could use rapidly-encoded place memory to 

reach the escape platform efficiently. Each of the four start positions around the pool (N, E, S, W) 

was used daily in an arbitrary, pre-determined, sequence to discourage egocentric strategies. 

Analysis focused on trial 2 of each day, when performance relies on place memory encoded within 

trial 1, whereas trials 3 and 4 mainly served to reinforce the task’s win-stay rule. Trial 2 was 

occasionally run as rewarded probe trial. During such probe trials, the Atlantis platform was 

withheld at the bottom of the pool for 60 s, to enable the measurement of search preference for the 

‘correct’ zone containing the platform location (see below, Performance measures), and was then 
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released automatically (i.e., independent of the rat’s behavior) in order to allow the rat to find and 

climb onto the platform and to reinforce the win-stay rule of the task, i.e. that the rat had to return to 

the correct location to escape from the pool. Each trial began with the rat being gently lowered into 

the water facing the pool wall at one of the four start positions. Ethovision tracking was triggered by 

remote control as soon as the rat was released into the water. If rats failed to reach the platform 

within 120 s, they were guided to the platform by the experimenter (i.e., 120 s was the maximum 

latency to reach the platform location). Rats were left on the platform for 30 s, before being 

removed from the pool and placed onto a towel in an opaque plastic box close to the entrance of the 

watermaze room until the start of the next trial. The center of the escape platform was either located 

on an inner (0.8 m) or outer (1.4 m) ring concentric with the pool. Rats were tested with a novel 

location each day: as each experiment involved 20 days of training or testing (eight days of 

pretraining plus two series of six days during which the effects of hippocampal drug infusions were 

tested, see below, Experimental design), 20 different locations were used (see Fig. 1C in Pezze and 

Bast, 2012). The inter-trial interval (ITI) was usually 10-30 s (i.e., as short as possible for 

convenience), but on selected test days the ITI, or retention delay, between trial 1 and 2 was 

increased to 20 min (see below, Experimental design), similar to previous studies showing 

disruptive effects of hippocampal pharmacological manipulations (Steele and Morris 1999; Pezze 

and Bast 2012). 

 

Performance measures  

Search preference in the vicinity of the platform location during probe trials was used as the main 

measure of rapid, 1-trial, place memory performance, based on evidence from our previous studies 

that search preference is more sensitive than latency and pathlength measures (including savings, 

i.e. trial 1 values – trial 2 values) to manipulations of the hippocampus (Bast et al. 2009; Pezze and 

Bast 2012 ) and to behavioral manipulations thought to affect hippocampus-dependent memory (da 

Silva et al. 2014). The main reason for the lower sensitivity of path lengths measures is that they 
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have a much higher variability (with trial 1 path lengths in particular being highly chance 

dependent) than search preference (compare da Silva et al., 2014). Therefore, since introduction of 

probe trials as part of the DMP procedure (Bast et al., 2009), we have been using search preference 

as the main performance measure in our watermaze DMP experiments (as has long been the case 

for the standard watermaze paradigm). To quantify search preference, eight 40-cm diameter 

‘virtual’ zones were defined on the inner and outer ring of the pool, so that one zone, the ‘correct’ 

zone, was concentric with the platform location, and all eight zones were non-overlapping, evenly 

spaced and symmetrically arranged. The time spent in each of these eight zones during the 60-s 

probe trial was determined automatically using the Ethovision software. From these measures, the 

‘% time spent in the correct zone’ was calculated as: (time in ‘correct zone’ [s] / time in all eight 

zones [s]) x 100 %. By chance, this value should be 100 % / 8 = 12.5 %, whereas higher values 

indicate a search preference for the correct zone. In addition, latencies and path lengths to reach the 

platform perimeter were recorded for all trials, with steep reduction from trial 1 to 2 indicating 1-

trial place memory. Path lengths have the advantage over latencies that they measure the efficiency 

in reaching the platform independent of potential drug-induced swim speed changes. Therefore, on 

infusion days, analysis focused on path lengths.  

 

Experimental design to test the effects of hippocampal picrotoxin infusions 

Fourteen rats, preimplanted with hippocampal guide cannulae, were pretrained on the task for 8 

days, using a novel location each day, before testing infusion effects. Rats were divided in two 

batches to be trained with one of two different sequences of daily platform locations, so that on each 

day two different platform locations were used for pretraining; the purpose of this was to reduce the 

risk that a day’s performance measures are biased by the properties of specific platform locations. 

The ITI between trial 1 and 2 was 10-30 s (i.e., as short as possible for convenience, because it 

reduced the time required for training) for the first four days of pretraining and 20 min for the 

remaining days. The ITIs for trials 2 to 4 were always 10-30 s for convenience. On pretraining days 
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6 and 8, trial 2 was run as probe. In addition, rats received a mock infusion immediately before trial 

1 on either day 6 or 8. Half of the rats received the mock infusion on day 6, the other half on day 8, 

with start positions and platform locations counterbalanced between the mock-infusion and no-

mock-infusion condition. As in our previous studies (Bast et al. 2009; Jackson et al. 2011; Pezze 

and Bast 2012; da Silva et al. 2014), rats showed asymptotic task performance at the end of 

pretraining, characterized by marked latency reduction from trial 1 to trial 2 and strong search 

preference on the probe trials, without any effect of  mock infusions (data not shown). 

Following pretraining, the effects of bilateral saline or picrotoxin (75 or 150 ng/side) 

infusions were then compared in a within-subjects design. Doses were chosen based on the 5CSRT 

experiments, where 150 ng caused attentional deficits, and 75 ng was without effect. Each rat 

received three doses (including saline) across three infusion days, with each infusion day preceded 

by a testing day without infusion. This series of three infusions was repeated once more (resulting 

in a total of six infusions, including two saline infusions). The values from the two series were 

averaged to obtain one single value for each infusion condition (for one rat, values for all infusion 

conditions could only be collected in one series, and, therefore, for this rat, only the values from this 

one series were considered). On infusion days, rats received hippocampal infusions immediately 

before trial 1, and trial 2 was run 20 min after trial 1 as a probe to measure search preference.  In 

both infusion series, testing order, as well as start positions and platform locations, were 

counterbalanced across the infusion conditions. The DMP task was run as during pretraining, with a 

new platform location, different from the pretraining locations, used every day. As during 

pretraining, rats continued to be trained with one of two different sequences of daily platform 

locations, so that on each day two different platform locations were used.  

 

Data analysis 

One average value for each performance measure in each infusion condition was calculated from 

the two series of infusions for each rat, before path length and search preference measures were 
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subjected to ANOVA with infusion and trials (only for path lengths) as within-subject factors. Main 

effects were examined further using Fisher’s LSD test. To test for significant one-trial place 

memory, in each infusion condition, search preference was compared to chance (12.5%) and trial 1 

and 2 path lengths were compared, using one-sample or paired sample t-tests (2-tailed), 

respectively. 

 

In vivo electrophysiology to measure the effects of hippocampal microinfusions in the vicinity 

of the infusion site 

Multi-unit and LFP activity in the vicinity of the infusion site was recorded under isofluorane 

anesthesia using a custom-made assembly of a 33-gauge stainless steel infusion cannula and an 8-

electrode (microwire) recording array. Methods were as described in detail in our previous study 

using such an infusion-recording array in the medial prefrontal cortex (Pezze et al. 2014), except 

that recording site and aspects of the data analysis were adapted for the hippocampus.  

The infusion-recording assembly (see Fig. 5A) consisted of a 33-gauge stainless steel infusion 

cannula attached to an 8-channel microwire array (eight 50-µm Teflon-coated stainless steel wires, 

with an impedance of about 100 kΩ measured at 1 kHz and arranged in one row of about 2 mm) 

with a stainless-steel groundwire (NB Labs, Texas USA). The cannula tip touched the electrodes 

and was positioned about 0.5 mm above the tips of the central electrodes. The end of the cannula 

was connected to a 1-µl syringe via flexible tubing. Infusion cannula and tubing were filled with 

picrotoxin solution or saline before the infusion-recording assembly was inserted into the brain. A 

small air bubble was trapped where the tubing was connected to the syringe, with movement of the 

bubble serving to verify a succesful infusion. To prevent leakage and drug diffusion before the 

infusion, the piston of the syringe was pulled back to draw up a 0.25-µl air ‘plug’ separating the 

infusion solution from the brain’s extracellular space. The assembly was stereotactically implanted 

into the right hippocampus, such that the electrode array was arranged perpendicular to the brain 

midline and anterior to the infusion cannula, with the cannula tip aimed at the same coordinates as 
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in the behavioral experiments (5.2 mm posterior to bregma, 4.8 mm lateral from midline, and 6.5 

mm ventral from dura).  

To record extracellular measures of neural activity, the electrode array was connected via a 

unity-gain multi-channel headstage to a multichannel preamplifier (Plexon Inc, USA), which 

amplified (1000 x) the analogue signal and band-pass filtered it into multi-unit spikes (250 Hz to 8 

kHz) and LFP signals (0.7 Hz to 170 Hz). The analogue signals were fed to a Multichannel 

Acquisition Processor (MAP) system (Plexon Inc, USA). Multiunit and LFP data were viewed 

online and recorded with Real-Time Acquisition System Programs for Unit Timing in Neuroscience 

(RASPUTIN) software (Plexon Inc, USA). 

After positioning the assembly and stabilization (at least 30 min), local field potential (LFP) data 

were recorded continuously and multi-unit spikes were recorded when a pre-defined amplitude 

threshold of -300 µV was crossed. Data were recorded for a 30 min baseline and a 60 min period 

following hippocampal infusion of 0.5 µl of saline (n=7) or 150 ng picrotoxin in 0.5 µl saline (n= 

8). For infusions, the piston of the 1-µl syringe was moved manually at a slow speed (approximately 

0.5 µl / min as in the behavioral studies) to remove the 0.25-µl air plug from the injector tip and 

inject 0.5 µl of saline (n=7) or of 150 ng picrotoxin in 0.5 µl saline (n= 8) into the hippocampus. 

Following completion of the recordings, the rat was killed by increasing the isofluorane level. 

The positions of the most lateral and most medial electrodes were marked by passing cathodic 

current (0.2 mA, 10 s) to deposit ferric ions, which could be revealed by the Prussian Blue Reaction 

following fixation of the brain in a 4% paraformaldehyde solution containing 4% potassium 

ferrocyanide. Locations of the marked electrode tips were mapped onto coronal sections of the rat 

brain stereotaxic atlas by Paxinos and Watson (1998). 

From the multi-unit data, firing rate and burst parameters (number of bursts, % of spikes fired as 

bursts, mean firing rate within bursts, mean burst duration, inter-burst interval) were calculated in 5-

min bins for each correctly placed electrode. Hippocampal bursts were defined as more than two 

spikes with an inter-spike interval shorter than 6 ms (Royer et al. 2012). From the LFP recordings, 
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we calculated the area under the curve of the power spectral density function (AUC of PSD) from 

0.7-170 Hz as a measure of overall LFP power for every 5-min block (Pezze et al. 2014). For 

normalization to baseline, values from individual channels were divided by the average values 

obtained from the same channel during the six 5-min baseline blocks. Normalized values were 

averaged across all channels per individual rat, and these average values were used to calculate 

means for the different infusion groups. Differences between infusion groups were examined, using 

ANOVA with infusion as between- and 5-min block as within-subjects factor. 

 

 

RESULTS  

Infusion cannula placements in behavioral studies 

Infusion cannula tips were primarily placed within the temporal to intermediate hippocampus, 

within an area corresponding to 4.8-6.3 mm (5.6-6.3 mm in the Watermaze experiments) posterior 

to bregma in Paxinos and Watson (1998) (Fig. 1). In the locomotor and PPI experiments, the 

infusion sites tended to be slightly deeper than in the other two experiments, with several 

placements encroaching on the entorhinal cortex. Therefore, the locomotor and PPI effects in the 

present study may partly reflect the impact of picrotoxin within the entorhinal cortex. The 

entorhinal cortex features strong prefrontal and subcortical projections similar to temporal to 

intermediate hippocampus and previous studies indicate that stimulation or disinhibition of these 

sites have a similar impact on prefrontal cortex and subcortical sites (Lopes da Silva et al. 1990; Jay 

and Witter 1991; Gigg et al. 1994; Groenewegen et al. 1999; Mitchell et al. 2000; Floresco et al. 

2001). Visible brain damage was restricted to the area immediately surrounding the guide cannula 

and the injection site (0.5 mm below the end of the guide).  

 

Hippocampal disinhibition reduces startle, without affecting PPI, and increases locomotor 

activity 
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Hippocampal picrotoxin (150 ng/side) reduced startle reactivity on pulse alone trials, especially 

during the first test block, before startle habituation led to similarly low startle amplitude in saline 

and picrotoxin groups (main effect of infusion: F1,17=6.60, P=0.020; interaction infusion X test 

block: F2,34=6.85, P=0.003) (Fig. 2A, left). Infusions did not affect PPI at any prepulse intensity 

(main effect of infusion: F1,17=1.21, P=0.29; interaction infusion X prepulse intensity: F3,51<1) (Fig. 

2A, right). 

While all groups showed similar locomotor activity in the 30 min preceding infusions (main 

effect or interaction involving the factor infusion: both F<1), picrotoxin (50, 75, 100 or 150 ng/side) 

infusions increased locomotor activity compared to saline, especially during the first 30-40 min of 

the 60-min post-infusion testing (main effect of infusion: F4,24=6.11, P=0.002; interaction infusion 

X 10-min block: F20,120=2.86, P=0.005) (Fig. 2B). 

 

5-CSRT experiment: Hippocampal neural disinhibition causes attentional deficits 

Hippocampal picrotoxin selectively impaired attention on the 5CSRT test at the highest dose (150 

ng), as indicated by reduced accuracy (Fig. 3), without significant effects on other performance 

measures or at other doses (Table 1). Testing at the higher dose range (saline, 75 and 150 ng) 

revealed a dose-dependent reduction of % accuracy (F2,18=6.57, P=0.007), with 150 ng reducing 

accuracy as compared to saline (P=0.003) and 75 ng (P=0.012), which did not differ from saline 

(P=0.54). 

 

Watermaze DMP task: Hippocampal disinhibition impairs 1-trial place memory performance 

Hippocampal picrotoxin impaired performance based on 1-trial place memory (Fig. 4). Search 

preference during probe trials was dose-dependently reduced (F2,26=6.3, P=0.006), with search 

preference at 150 ng significantly reduced as compared to saline (P=0.002) and tending to be lower 

than at 75 ng (P=0.05), which did not significantly differ from the saline condition (P=0.15) (Fig. 
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4A). Search preference at 150 ng did not differ from chance (12.5%) (t13<1), whereas rats 

performed above chance at 75 ng (t13=2.2, P=0.04) and with saline (t13=3.5, P=0.005). 

Path-length data also supported that hippocampal picrotoxin impaired performance based on 

rapid place learning (Fig. 4B). Path length analysis revealed an infusion effect (F2,26=5.1, P=0.01), 

reflecting higher path lengths at the high picrotoxin dose, compared to saline (Saline vs. 150 ng, 

P=0.004; Saline vs. 75 ng, P=0.12; 75ng vs. 150ng, P=0.13), and a trial effect (F3,39=23.2, 

P<0.0001), reflecting path length reduction across trials. Although the dose X trial interaction was 

not significant (F6,78=1.3, P=0.29), the increase of path lengths by picrotoxin, as compared to saline, 

appeared mainly driven by a less pronounced path-length reduction between trial 1 and 2, indicating 

impaired 1-trial place memory. Consistent with this, path lengths significantly decreased from trial 

1 to 2 in the saline condition (t13=4.36, P=0.001), but not at 75 ng (t13=1.8, P=0.09) or 150 ng 

picrotoxin (t13<1). Picrotoxin infusions also numerically reduced path lengths savings from trial 1 to 

2 (trial 1 path lenghth – trial 2 path length, mean+SEM: Saline, 869.1+199.5 cm; 75 ng picrotoxin, 

487.7+299.0 cm; 150 ng picrotoxin, 148.9+356.2 cm), although this effect was not significant 

(F2,13=1.7, P=0.20). The pattern of infusion effects on latency measures was virtually identical to 

the one reported for the path length measures (data not shown). Thus, overall path length and 

latency measures support impairments in rapid place learning performance due to hippocampal 

picrotoxin infusion, although the relevant infusion effects on these measures failed to reach 

statistical significance. This is consistent with our previous studies showing that path length 

measures are less sensitive than the search preference measure to hippocampal manipulations (Bast 

et al. 2009; Pezze and Bast 2012 ) and to behavioral manipulations thought to affect hippocampus-

dependent memory (da Silva et al. 2014). 

To further characterize the nature of the impairment caused by hippocampal picrotoxin on the 

watermaze DMP test, we performed additional analyses of rats behavior during trial 1. First, during 

trial 1, rats spent a similar proportion of the trial duration (i.e., the time until rats reached the 

platform) in all 8 zones, regardless of the infusion condition [(time in all 8 zones/trial 
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duration)X100%, mean+SEM: Saline, 42.7+1.5%; 75 ng picrotoxin, 43.3+1.9%; 150 ng picrotoxin, 

38.5+3.2%; F2,26=1.2, P=0.31]. This pattern of results suggests that hippocampal neural 

disinhibition does not impair normal search behavior, consistent with informal observations of the 

rats’ behavior during the experiment. Second, we analyzed which proportion of trial-1 time spent in 

these 8 zones was spent in the zone containing the platform location on the pevious day (‘previous 

day’s zone’). Intact rats typically spend more time in the previous day’s zone than expected based 

on chance (12.5 %), indicating place memory for the previous day’s correct location acquired 

during the 4 trials completed on the previous day (Steele and Morris, 1999). If picrotoxin-infused 

rats spent more time in the previous day’s zone during trial 1, this could be taken to reflect 

perseverative behavior, which might interfere with learning of the new location. If they spent less 

time, this could reflect impaired retrieval/expression of place memory acquired during the 4 trials of 

the previous day (Steele and Morris, 1999). However, there was no significant effect of infusion on 

the percentage of time spent in the previous day’s zone during trial 1 [(time in previous day’s 

zone/total time in all 8 zones)X100%, mean+SEM: Saline, 25.3+3.0%; 75 ng picrotoxin, 

24.9+3.0%; 150 ng picrotoxin, 17.7+2.7%; F2,26=2.3, P=0.12). These data show that hippocampal 

picrotoxin did not cause perseverative behavior on the watermaze test, consistent with the 5CSRT 

data not revealing any perseverative tendencies (see Table 1). Hippocampal picrotoxin numerically 

reduced the time spent in the previous day’s zone, mainly at the higher dose. Although ANOVA did 

not reveal a significant effect of infusion (see above), search preference in the previous day’s zone 

was significantly above chance (12.5 %) following hippocampal infusion of saline and 75 ng 

picrotoxin (both t13>4.2, P<0.001), indicating memory for the previous day’s location, but only 

tended to be higher than chance following infusion of 150 ng (t13=1.9, P=0.08). Overall, this data 

support that hippocampal neural disinhibition does not markedly affect search behavior during trial 

1, although the data points to a slight (non-significant) impairment in retrieval/expression of the 

place memory acquired during the previous day’s 4 trials. 
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In vivo electrophysiology: Picrotoxin enhances hippocampal neuron firing and bursting 

The most medial and/or the most lateral electrodes were located outside of the hippocampus 

(typically one to three electrodes per rat). The data from these electrodes, which were placed just 

outside the medial or lateral boundaries of the hippocampus, were analyzed separately, providing a 

control measure for drug spread out of the hippocampus. All other electrodes were placed within the 

temporal to intermediate hippocampus (Fig. 5A). 

At electrodes placed within the hippocampus, picrotoxin (150 ng) increased the overall firing rate 

and markedly enhanced the occurrence of bursts and the proportion of spikes fired as part of bursts, 

alongside a slight increase in burst duration, but without affecting within-burst firing rate (Fig. 5B). 

Mean pre-infusion baseline values of the electrophysiological parameters analyzed did not differ 

between infusion groups (Table 2). Overall firing rates were increased by picrotoxin, as compared 

to saline, starting immediately after infusion, with firing rates in both groups converging again 

about 30 min after infusion because values in the picrotoxin group peaked between 10 and 25 min, 

while values in the saline group showed an upward drift (possibly reflecting nonspecific infusion 

effects or a baseline drift) between 15 and 25 min following infusion (interaction infusion group X 

5 min block: F17,221=1.85, P=0.02). 

The most pronounced effects of picrotoxin on hippocampal neuron firing were increases in 

the occurrence of bursts and in the proportion of spikes fired as part of bursts. Picrotoxin markedly 

increased bursts per minute, starting within 5 min and peaking around 25-30 min after infusion 

before values converged with the saline group again (interaction drug x 5 min block: F17,221=2.05, 

P=0.01). The percentage of spikes fired in bursts was also markedly increased, following a similar 

time course as bursts per minute (interaction infusion group X 5-min block: F17,221=2.96, P<0.001). 

Moreover, picrotoxin increased burst duration, starting immediately after infusion and peaking 20-

25 min later before values slowly returned to baseline (interaction infusion group X 5-min block: 

F17,221=3.42, P<0.001). Consistent with the increased burst duration, picrotoxin decreased inter-
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burst intervals (interaction infusion group x block: F17,221=1.88, P=0.02). Within burst firing rate 

was not affected by infusions (main effect or interaction involving infusion group: F<1.4, P>0.4).  

Consistent with the absence of behavioral seizure signs, LFP recordings did not show 

characteristics of hippocampal seizures that may result from convulsive doses of GABA-A 

antagonists, namely a fast sequence of so-called LFP ‘spikes’ (sharp negative LFP deflection) at a 

rate of 5-20 per s superimposed on spike-wave discharges (a high-amplitude sharp negative LFP 

deflection followed by a positive LFP wave) (Bragin et al. 2009). Overall LFP power, measured as 

the AUC of PSD, was not affected by picrotoxin (main effect: F1,13<1; interaction infusion x 5-min 

block: F17,221=1.23; P=0.24) (data not shown). 

To support the spatial selectivity of the picrotoxin effects, we analyzed the data recorded from 

electrodes placed just outside the medial or lateral boundaries of the hippocampus (i.e., in the 

surrounding thalamus or parahippocampal cortex). In contrast to the marked picrotoxin-induced 

enhancement of burst firing within the hippocampus, as reflected by significant increases in ‘bursts 

per minute’, ‘percentage of spikes fired as bursts’ and ‘burst duration’, concomitant with  a 

significant increase in overall firing rate (see above and Fig. 5B), picrotoxin did not affect these 

parameters at the misplaced electrodes just outside the hippocampus (all interactions and main 

effects involving the factor infusion, P > 0.15) (Fig. 5C). There are limitations to this analysis: i) 

the number of misplaced electrodes was small;  ii) in one rat receiving picrotoxin infusion, the only 

misplaced electrode was damaged, so that data of misplaced electrodes were only available from 

n=7 rats in the picrotoxin group; iii) in some rats, none of the few misplaced electrodes recorded 

any bursts during the baseline period, so that these rats had to be excluded from the analysis of burst 

parameters normalized to baseline, resulting in n=5 in the picrotoxin and n=6 in the saline group; 

iv) electrodes were placed in two different regions (thalamus or parahippocampal cortex). These 

factors probably contributed to higher variability of the data recorded from the misplaced 

electrodes. Nevertheless, the control data from the misplaced electrodes support that picrotoxin 

effects were largely restricted to the hippocampus. This is consistent with autoradiographic studies 
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showing that intra-hippocampally infused radiolabelled AP-5, even at the relatively high infusion 

volume of 1 µl (in the present study, we used 0.5 µl), does not substantially spread across the medial 

and lateral boundaries of the hippocampus, probably because of the densely packed fiber bundles 

surrounding the hippocampus (Morris et al. 1989; Steele and Morris 1999). 

 

 

 

DISCUSSION 

Hippocampal neural disinhibition by the GABA-A antagonist picrotoxin impaired attention, without 

affecting other behavioral measures, on the 5CSRT test  and caused deficits in  rapid place learning 

performance on the watermaze DMP test. Moreover, hippocampal disinhibition moderately 

increased locomotor activity and slightly reduced startle reactivity, leaving PPI unaffected. In vivo 

electrophysiological recordings showed that picrotoxin mainly enhanced burst firing of 

hippocampal neurons.  

 

Enhanced burst firing 

Disinhibition by picrotoxin enhanced hippocampal burst firing and concomitantly increased overall 

firing rate in acute in vivo electrophysiological experiments under anesthesia. These findings are 

consistent with the enhanced hippocampal burst firing recently reported following pharmaco- or 

optogenetic silencing of hippocampal inhibitory interneurons in vitro (Lovett-Barron et al. 2012) 

and in awake mice (Royer et al. 2012), and corroborate the important role of GABAergic inhibition 

in hippocampal burst regulation. Aberrant burst firing may substantially interfere with cognitive 

functions of the hippocampus and its projection sites, as burst firing has been implicated in the 

encoding and readout of hippocampal memory (Takahashi and Magee 2009; Xu et al. 2012) and is 

particularly effective in driving post synaptic targets (Lisman 1997). Our electrophysiological 
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findings, in conjunction with our behavioural findings, suggest that aberrant hippocampal burst 

firing causes attentional and memory deficits.  

 

Attentional deficits 

The selective attentional deficits on the 5CSRT test, indicated by reduced accuracy without changes 

in other performance measures, probably reflects disruption of extra-hippocampal processing, most 

likely in prefrontal cortex or ventral striatum through strong hippocampal functional connectivity to 

these sites (Bast 2011). Previous lesion studies suggest that the hippocampus itself plays, if at all, 

only a minor role in mediating sustained attention as measured on the 5CSRT and related tests. On 

the 5CSRT test, temporal hippocampal lesions (made after pretraining to criterion levels) mainly 

increased rats’ impulsive/premature responding, with little disruption of attentional performance, 

possibly as a side effect of increased impulsive responding, whereas septal (or dorsal) hippocampal 

lesions did not substantially affect task performance (Abela et al. 2013). Although one study 

reported persistent reductions in accuracy on the 5CSRT test following lesions to the temporal 

hippocampus (made before pretraining), these were accompanied by large increases in perseverative 

responding, with the number of premature responses not reported (Le Pen et al. 2003).  Consistent 

with hippocampal lesions disrupting aspects of inhibitory response control required on the 5CSRT 

test, rather than sustained attention, complete hippocampal lesions did not affect attentional 

performance on a prefrontal-dependent self-paced serial-reaction task requiring little impulse 

control (Burk and Mair 2001). In contrast, sustained attention is highly dependent on balanced 

prefrontal activity, with prefrontal lesions (Chudasama and Robbins 2006), functional inhibition (by 

the GABA-A agonist muscimol) or disinhibition (Pezze et al. 2014) all markedly disrupting 

attention on the 5CSRT test. Sustained attention on the 5CSRT test also requires an optimal level of 

prefrontal (Granon et al. 2000) and ventral striatal (Pezze et al. 2007) dopamine receptor 

stimulation, which may be disrupted by hippocampal neural disinhibition, given that hippocampal 

stimulation activates the meso-prefrontal-ventral striatal dopamine system (Mitchell et al. 2000; 
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Floresco et al. 2001; Peleg-Raibstein et al. 2005; Bast 2011; Lodge and Grace 2011). Future studies 

will have to clarify the extra-hippocampal, including prefrontal and ventral striatal, neural effects of 

hippocampal disinhibition. The attentional deficits following hippocampal neural disinhbition 

highlight that the cognitive impact of regional neural disinhibition can extend beyond functions 

normally depending on the disinhibited region (compare Auger and Floresco 2014). 

Contrasting with the selective reduction in accuracy following hippocampal neural disinhibition 

in the present study, attentional deficits on the 5CSRT test following lesions (Chudasama and 

Robbins 2006), as well as functional inhibition or disinhibition (Pezze et al. 2014), of the medial 

prefrontal cortex manifest as decreases in accuracy alongside increases in omissions (additionally, 

lesions and functional inhibition affect response control measures). However, experimental 

manipulations primarily targetting the afferent modulation of the prefrontal cortex have been 

reported to cause selective reductions in accuracy without increasing omissions, including selective 

manipulations of the cholinergic (McGaughy et al. 2002)  or dopaminergic (Granon et al. 2000) 

modulation of the prefrontal cortex. Selective reductions in accuracy, without increases in 

omissions, have also been reported in the triple transgenic mouse model of Alzheimer’s disease 

(Romberg et al. 2011) and the pilocarpine rat model of temporal lobe epilepsy (Faure et al. 2014), 

where the primary pathology is not within the prefrontal cortex, but in brain regions, including 

medial temporal lobe regions, that may modulate the prefrontal cortex. It is entirely consistent with 

these studies that hippocampal neural disinhibition, which increases hippocampal burst firing and, 

by way of hippocampo-prefrontal functional connectivity, would modulate prefrontal function, 

causes similar selective reductions in accuracy on the 5CSRT task. Interestingly, both the 

pilocarpine rat model (Kumar and Buckmaster 2006) and the triple transgenic mouse model of 

Alzheimer’s disease (Davis et al. 2014) show hippocampal hyperexcitability; our new finding that 

hippocampal neural disinhibition causes attentional impairments suggests that hippocampal 

hyperexcitability may contribute to the attentional deficits in these rodent models. 
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Memory deficits 

Hippocampal picrotoxin markedly disrupted rapid place learning performance on the watermaze 

DMP test, as reflected by a marked reduction of search preference for the new location, which rats 

had to learn within the first trial of the day. Previous studies suggest that performance on the 

watermaze DMP test depends on the hippocampus for the required rapid encoding of new places 

and for the translation of such rapid spatial updating into behavioral performance. The DMP test is 

disrupted by pharmacological manipulations targeting synaptic plasticity mechanisms mediated by 

NMDA (Steele and Morris 1999) and dopamine receptors (Pezze and Bast 2012) and by partial 

hippocampal lesions, including lesions restricted to temporal and intermediate hippocampus (Bast et 

al. 2009), which were targeted by the infusions in the present study. Functional inhibition targeting 

the intermediate hippocampus also disrupts task performance (McGarrity et al. 2014). The 

requirement of temporal to intermediate hippocampus probably reflects that these regions feature 

functional connectivity to frontal and subcortical sites necessary to translate hippocampal learning 

into performance, although the specific relevant brain sites remain to be determined (Bast et al. 

2009; Bast 2011). Therefore, neural disinhibition, causing aberrant neuronal bursting, may disrupt 

DMP performance by interfering with hippocampal encoding or readout of relevant place 

information or with the passing on of such information to hippocampal projection sites.   

Our finding, highlighting the importance of GABAergic inhibition for hippocampus-

dependent memory performance,  converges with recent studies in mice reporting learning-related 

increase of hippocampal inhibitory synapses (Ruediger et al. 2012) and impaired memory 

performance following disruption of hippocampal GABA neuron function by molecular-, opto- or 

pharmacogenetic approaches (Prut et al. 2010; Murray et al. 2011; Andrews-Zwilling et al. 2012; 

Caputi et al. 2012; Donato et al. 2013; Gilani et al. 2014; Lovett-Barron et al. 2014; Engin et al. 

2015; Lee et al. 2016).  Moreover, our findings support recent studies in humans and rodent models 

linking hippocampal overactivity and hyperexcitability to age-related memory deficits (Koh et al. 

2010; Bakker et al. 2012; Davis et al. 2014) and are consistent with the correlation of hippocampal 
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overactivity with memory deficits in schizophrenia (Tregellas et al. 2014). However, hippocampal 

neural disinhibition may facilitate hippocampal synaptic plasticity and, thereby, improve memory, if 

such disinhibition is finely and dynamically regulated by endogenous plasticity (Donato et al. 2013) 

or if there is a pre-existing deficit due to increased neural inhibition (Fernandez et al. 2007). 

Moreover, systemic injection of a selective inverse agonist to negatively modulate GABA-A 

receptors containing the alpha5 subunit, which are predominantly expressed in hippocampus and 

constitute about 20% of hippocampal GABA-A receptors, has been suggested to facilitate 

hippocampal plasticity and memory (Dawson et al. 2006), although transgenic reduction of alpha5 

subunit-containing GABA-A receptor expression in the hippocampus has also been reported to 

disrupt aspects of hippocampus-dependent memory (Prut et al. 2010; Engin et al. 2015). 

Interestingly, a recent study suggests that enhancing the amplitude, but not duration, of synpatic 

excitation within the prefrontal cortex (by optogenetic stimulation of glutamatergic neurons or local 

infusion of a specific AMPAkine)  enhances prefrontal-dependent recognition memory (Benn et al. 

2016). Similarly, the selective inverse agonist at alpha5-subunit containing GABA receptors may 

enhance hippocampus-dependent memory by enhancing the amplitude of hippocampal neural 

activity, while leaving the temporal pattern of neural activity largely unaffected (this is consistent 

with in vitro evoked potential findings that the drug enhances LTP induction, without affecting 

stimulation-evoked field potential bursting; Dawson et al. 2006). In contrast, hippocampal neural 

disinhibition caused by picrotoxin in the present study altered the temporal organization of 

hippocampal neural activity (enhancing burst-pattern firing). Overall, hippocampus-dependent 

memory performance appears to require hippocampal neural activity that is appropriately balanced 

by GABAergic inhibition, resembling the requirement of appropriately tuned prefrontal activity for 

prefrontal-dependent cognitive functions (Gruber et al. 2010; Pezze et al. 2014; Tse et al. 2015). 

 

Sensorimotor effects 
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Locomotor hyperactivity and reduced startle reactivity caused by hippocampal picrotoxin in Lister 

hooded rats in the present study replicate findings in Wistar rats (Bast et al. 2001). These moderate 

effects are unlikely to have interfered with performance on the cognitive tests, which is supported 

by normal response and reward-collection latencies. Locomotor hyperactivity is consistent with the 

idea that increased hippocampal neuron activity drives the dopamine system and associated 

behavioral changes, which may be relevant to psychosis (Mitchell et al. 2000; Floresco et al. 2001; 

Bast and Feldon 2003; Bast 2011; Lodge and Grace 2011; Gilani et al. 2014).  

Hippocampal picrotoxin did not affect PPI in Lister hooded rats, contrasting with the marked PPI 

disruption in Wistar rats (Bast et al. 2001). Considered together with our recent finding that 

prefrontal picrotoxin, which markedly disrupts PPI in Sprague Dawley rats (Japha and Koch 1999), 

does not affect PPI in Lister hooded rats (Pezze et al. 2014), this suggests that the forebrain 

modulation of PPI is less pronounced in Lister hooded than in other rat strains, adding to strain and 

species differences in PPI modulation (Swerdlow et al. 2008). 

 

Cognitive and behavioral impact of neural disinhibition: comparison to  inactivation and 

lesions 

The findings that hippocampal neural disinhibition disrupted hippocampus-dependent place 

learning performance on the watermaze DMP task (similar to hippocampal lesions and inactivation) 

and attentional performance on the 5CSRT test (similar to prefrontal lesion, inactivation and 

disinhibition) supports the idea that hippocampal neural disinhibition, by disrupting balanced neural 

activity locally within the hippocampus or distally within hippocampal projection sites, may disrupt 

cognitive and behavioral functions depending on the hippocampus and its projection sites, such as 

the medial prefrontal cortex (Bast 2011).  

However, other hippocampus- and prefrontal-dependent functions can be largely unaffected by 

hippocampal neural disinhibition. In the present study, hippocampal neural disinhibition did not 

affect response control on the 5CSRT test (as reflected by unchanged premature or perseverative 
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responses), which has been shown to be markedly disrupted by both prefrontal and hippocampal 

lesions and/or inactivation (Chudasama and Robbins 2006; Chudasama et al. 2012; Abela et al. 

2013; Pezze et al. 2014); similar to hippocampal neural disinhibition, prefrontal disinhibition also 

does not affect response control (Pezze et al. 2014). This suggests that response control requires 

neural activity within the hippocampo-prefrontal circuit, but not the appropriate tuning of such 

activity. In other words, response control can be sustained as long as neural activity within the 

hippocampo-prefrontal circuit is above a minimal level. 

Moreover, neural disinhibition of the (temporal) hippocampus (similar to direct chemical or 

electrical stimulation, see Bast and Feldon, 2003) enhances locomotor activity (present study; Bast 

et al. 2001), which depends on neural activity within the temporal hippocampus and is reduced by 

inactivation of this region (Bast et al. 2001b). Similarly, prefrontal neural disinhibition increases, 

whereas prefrontal functional inhibition decreases locomotor activity (Pezze et al. 2014). These 

findings suggest that neural activity within hippocampus and prefrontal cortex drives open field 

locomotor activity, with a monotonic positive relation between neural activity in these areas and 

locomotion. These locomotor effects likely reflect a positive modulation of ventral striatal 

dopamine transmission by neural activity within the hippocampo-prefrontal circuit (Karreman and 

Moghaddam 1996; Mitchell et al. 2000; Floresco et al. 2001; Bast and Feldon 2003; Lodge and 

Grace 2011). 

Overall, regional neural disinhibition can impact on cognitive and behavioral functions mediated 

by the disinhibited region and by distal brain sites with which the disinhibited region is functionally 

connected. Depending on the specific hippocampus- or prefrontal-dependent function, hippocampal 

neural disinhibition may i) have a disruptive effect (i.e., have similar effects to hippocampal and/ or 

prefrontal lesions or inactivation), ii) have no effect, or iii) enhance the function (i.e., have opposite 

effects to hippocampal or prefrontal inactivation or lesion). These different effects suggest that 

different hippocampus- and prefrontal-dependent functions show different relationships to neural 

activity within hippocampus and prefrontal cortex. In addition, the impact of hippocampal neural 
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disinhibition can extend beyond hippocampus- and prefrontal-dependent functions, reflecting, for 

example, hippocampal functional links to subcortical sites (e.g., impact on subcortical dopamine 

transmission that is thought to drive locomotor activity). 

 

Clinical relevance 

Hippocampal GABA dysfunction has been implicated in schizophrenia and age-related cognitive 

decline (Lisman et al. 2008; Huang and Mucke 2012; Stanley et al. 2012; Heckers and Konradi 

2014; Nava-Mesa et al. 2014; Ruzicka et al. 2015). Given the close link between neural activity and 

metabolic activation (Sokoloff 1981), the enhanced hippocampal mutli-unit activity caused by acute 

GABA antagonism is consistent with the hippocampal metabolic overactivity characterizing early 

stages of these disorders (Schobel et al. 2009; Bakker et al. 2012; Huang and Mucke 2012). 

Compensatory adjustments and excitotoxicity associated with long-term GABA dysfunction and 

neural overactivity may contribute to regional hypoactivity and atrophy characterizing later disease 

stages (Huang and Mucke 2012; Schobel et al. 2013; Anticevic et al. 2015), aspects of these chronic 

disorders not mimicked by acute GABA antagonism.  

The 5CSRT and DMP tests have high validity to measure deficits in attention and memory 

relevant to clinical disorders, with related human paradigms – continuous performance tests and 

place learning tests in analogues of the watermaze, respectively – revealing marked deficits in 

schizophrenia and age-related cognitive decline (Chudasama and Robbins 2006; Hort et al. 2007; 

Lustig et al. 2013; Romberg et al. 2013; Fajnerova et al. 2014). Our present findings in rats suggest 

that hippocampal neural disinhbition contributes to clinically relevant attentional and memory 

deficits. Furthermore, they support that causal relationships underly the recently reported 

correlations of hippocampal overactivity with both memory and attentional deficits in schizophrenia 

patients (Tregellas et al. 2014) and the association of hippocampal overactivity with memory 

deficits in amnestic mild cognitive impairment (Bakker et al., 2012).  
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Conclusions 

Hippocampal neural disinhibition causes dysregulation of local neuron firing characterized by 

enhanced bursting, which would be expected to disrupt hippocampal processing and cause aberrant 

drive to hippocampal projection sites. Consistently, hippocampal disinhibition disrupts 

hippocampus-dependent rapid place learning performance, as well as aspects of attentional 

performance that do not normally require the hippocampus, but are mediated by prefrontal-striatal 

mechanisms. The latter supports that hippocampal dysfunction may partly manifest through deficits 

in prefrontal-dependent function, consistent with strong hippocampo-prefrontal functional 

connectivity (Meyer-Lindenberg et al. 2005; Bast 2011). The attentional and memory deficits 

caused by hippocampal neural disinhibition, together with findings that prefrontal-cortical 

disinhibition disrupts attentional and executive functions (Gruber et al. 2010; Enomoto et al. 2011; 

Paine et al. 2011; Pehrson et al. 2013; Pezze et al. 2014; Paine et al. 2015; Tse et al. 2015), 

highlight the importance of cortico-hippocampal GABAergic inhibition for cognitive function. This 

supports that cortico-hippocampal neural disinhibition, which is a key feature of schizophrenia 

(Lisman et al. 2008; Heckers and Konradi 2014; Tse et al. 2015) and has been implicated in other 

disorders, most notably age-related cognitive decline (Huang and Mucke 2012; Stanley et al. 2012; 

Nava-Mesa et al. 2014), contributes to causing key cognitive deficits characterizing these disorders 

and, hence, is an important treatment target. 

 

 

 

Funding 

This work was supported by a School of Psychology PhD studentship (SM), a Royal Society 

Research Grant (TB), Nottingham University Research Strategy (TB) and Fellowship Enhancement 

(MP) Awards, a Leverhulme Trust Early Career Fellowship (MP), and School of Psychology Pump 

Prime Awards (MP, TB). During preparation of the manuscript, MP was funded by a BBSRC grant. 

Page 32 of 46Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   

33 

 

 

Acknowledgements 

Rachel Scriven and Valeria Lasio assisted with histological work during summer internships funded 

by a Wellcome Trust Vacation Scholarship and ERASMUS, respectively. We also thank Clare 

Spicer for technical assistance. 

Page 33 of 46 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   

34 

 

References 

Abela AR, Dougherty SD, Fagen ED, Hill CJ, Chudasama Y. 2013. Inhibitory control deficits in rats with ventral 

hippocampal lesions. Cereb Cortex. 23:1396-1409. 

Andrews-Zwilling Y, Gillespie AK, Kravitz AV, Nelson AB, Devidze N, Lo I, Yoon SY, Bien-Ly N, Ring K, Zwilling D, Potter 

GB, Rubenstein JL, Kreitzer AC, Huang Y. 2012. Hilar GABAergic interneuron activity controls spatial learning and 

memory retrieval. PLoS One. 7:e40555. 

Anticevic A, Corlett PR, Cole MW, Savic A, Gancsos M, Tang Y, Repovs G, Murray JD, Driesen NR, Morgan PT, Xu K, 

Wang F, Krystal JH. 2015. N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity 

better model early than chronic schizophrenia. Biol Psychiatry. 77:569-580. 

Arguello PA, Gogos JA. 2006. Modeling madness in mice: one piece at a time. Neuron. 52:179-196. 

Auger ML, Floresco SB. 2014. Prefrontal cortical GABA modulation of spatial reference and working memory. Int J 

Neuropsychopharmacol. 18. 

Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL, Gallagher M. 2012. 

Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron. 

74:467-474. 

Bast T. 2011. The hippocampal learning-behavior translation and the functional significance of hippocampal 

dysfunction in schizophrenia. Curr Opin Neurobiol. 21:492-501. 

Bast T, Feldon J. 2003. Hippocampal modulation of sensorimotor processes. Prog Neurobiol. 70:319-345. 

Bast T, Wilson IA, Witter MP, Morris RG. 2009. From rapid place learning to behavioral performance: a key role for the 

intermediate hippocampus. PLoS Biol. 7:e1000089. 

Bast T, Zhang WN, Feldon J. 2001. Hyperactivity, decreased startle reactivity, and disrupted prepulse inhibition 

following disinhibition of the rat ventral hippocampus by the GABA(A) receptor antagonist picrotoxin. 

Psychopharmacology (Berl). 156:225-233. 

Bast T, Zhang WN, Feldon J. 2001. The ventral hippocampus and fear conditioning in rats. Different anterograde 

amnesias of fear after tetrodotoxin inactivation and infusion of the GABA(A) agonist muscimol. Exp Brain Res. 

139:39-52. 

Benn A, Barker GR, Stuart SA, Roloff EV, Teschemacher AG, Warburton EC, Robinson ES. 2016. Optogenetic 

Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory. J Neurosci. 36:4930-4939. 

Bragin A, Azizyan A, Almajano J, Engel J, Jr. 2009. The cause of the imbalance in the neuronal network leading to 

seizure activity can be predicted by the electrographic pattern of the seizure onset. J Neurosci. 29:3660-3671. 

Burk JA, Mair RG. 2001. Effects of intralaminar thalamic lesions on sensory attention and motor intention in the rat: a 

comparison with lesions involving frontal cortex and hippocampus. Behav Brain Res. 123:49-63. 

Caputi A, Fuchs EC, Allen K, Le Magueresse C, Monyer H. 2012. Selective reduction of AMPA currents onto 

hippocampal interneurons impairs network oscillatory activity. PLoS One. 7:e37318. 

Chudasama Y, Doobay VM, Liu Y. 2012. Hippocampal-prefrontal cortical circuit mediates inhibitory response control in 

the rat. J Neurosci. 32:10915-10924. 

Chudasama Y, Robbins TW. 2006. Functions of frontostriatal systems in cognition: comparative 

neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol. 73:19-38. 

da Silva BM, Bast T, Morris RG. 2014. Spatial memory: behavioral determinants of persistence in the watermaze 

delayed matching-to-place task. Learn Mem. 21:28-36. 

Davis KE, Fox S, Gigg J. 2014. Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer's disease in 

vivo. PLoS One. 9:e91203. 

Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, MacLeod AM, Choudhury HI, McDonald LM, Pillai G, 

Rycroft W, Smith AJ, Sternfeld F, Tattersall FD, Wafford KA, Reynolds DS, Seabrook GR, Atack JR. 2006. An inverse 

agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther. 

316:1335-1345. 

Donato F, Rompani SB, Caroni P. 2013. Parvalbumin-expressing basket-cell network plasticity induced by experience 

regulates adult learning. Nature. 504:272-276. 

Engin E, Zarnowska ED, Benke D, Tsvetkov E, Sigal M, Keist R, Bolshakov VY, Pearce RA, Rudolph U. 2015. Tonic 

Inhibitory Control of Dentate Gyrus Granule Cells by alpha5-Containing GABAA Receptors Reduces Memory 

Interference. J Neurosci. 35:13698-13712. 

Enomoto T, Tse MT, Floresco SB. 2011. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, 

behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry. 69:432-441. 

Fajnerova I, Rodriguez M, Levcik D, Konradova L, Mikolas P, Brom C, Stuchlik A, Vlcek K, Horacek J. 2014. A virtual 

reality task based on animal research - spatial learning and memory in patients after the first episode of 

schizophrenia. Front Behav Neurosci. 8:157. 

Page 34 of 46Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   

35 

 

Faure JB, Marques-Carneiro JE, Akimana G, Cosquer B, Ferrandon A, Herbeaux K, Koning E, Barbelivien A, Nehlig A, 

Cassel JC. 2014. Attention and executive functions in a rat model of chronic epilepsy. Epilepsia. 55:644-653. 

Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC. 2007. Pharmacotherapy for cognitive 

impairment in a mouse model of Down syndrome. Nat Neurosci. 10:411-413. 

Floresco SB, Todd CL, Grace AA. 2001. Glutamatergic afferents from the hippocampus to the nucleus accumbens 

regulate activity of ventral tegmental area dopamine neurons. J Neurosci. 21:4915-4922. 

Gigg J, Tan AM, Finch DM. 1994. Glutamatergic hippocampal formation projections to prefrontal cortex in the rat are 

regulated by GABAergic inhibition and show convergence with glutamatergic projections from the limbic thalamus. 

Hippocampus. 4:189-198. 

Gilani AI, Chohan MO, Inan M, Schobel SA, Chaudhury NH, Paskewitz S, Chuhma N, Glickstein S, Merker RJ, Xu Q, Small 

SA, Anderson SA, Ross ME, Moore H. 2014. Interneuron precursor transplants in adult hippocampus reverse 

psychosis-relevant features in a mouse model of hippocampal disinhibition. Proc Natl Acad Sci U S A. 111:7450-

7455. 

Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW. 2000. Enhanced and impaired attentional 

performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 20:1208-

1215. 

Groenewegen HJ, Mulder AB, Beijer AV, Wright CI, da Silva FHL, Pennartz CM. 1999. Hippocampal and amygdaloid 

interactions in the nucleus accumbens. Psychobiology. 27:149-164. 

Gruber AJ, Calhoon GG, Shusterman I, Schoenbaum G, Roesch MR, O'Donnell P. 2010. More is less: a disinhibited 

prefrontal cortex impairs cognitive flexibility. J Neurosci. 30:17102-17110. 

Heckers S, Konradi C. 2014. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 

Hort J, Laczo J, Vyhnalek M, Bojar M, Bures J, Vlcek K. 2007. Spatial navigation deficit in amnestic mild cognitive 

impairment. Proc Natl Acad Sci U S A. 104:4042-4047. 

Howes OD, Kapur S. 2009. The dopamine hypothesis of schizophrenia: version III--the final common pathway. 

Schizophr Bull. 35:549-562. 

Huang Y, Mucke L. 2012. Alzheimer mechanisms and therapeutic strategies. Cell. 148:1204-1222. 

Jackson SJ, Hussey R, Jansen MA, Merrifield GD, Marshall I, MacLullich A, Yau JL, Bast T. 2011. Manganese-enhanced 

magnetic resonance imaging (MEMRI) of rat brain after systemic administration of MnCl(2): hippocampal signal 

enhancement without disruption of hippocampus-dependent behavior. Behav Brain Res. 216:293-300. 

Japha K, Koch M. 1999. Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: reversal by 

haloperidol. Psychopharmacology (Berl). 144:347-354. 

Jay TM, Witter MP. 1991. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat 

studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol. 313:574-586. 

Karreman M, Moghaddam B. 1996. The prefrontal cortex regulates the basal release of dopamine in the limbic 

striatum: an effect mediated by ventral tegmental area. J Neurochem. 66:589-598. 

Koh MT, Haberman RP, Foti S, McCown TJ, Gallagher M. 2010. Treatment strategies targeting excess hippocampal 

activity benefit aged rats with cognitive impairment. Neuropsychopharmacology. 35:1016-1025. 

Kumar SS, Buckmaster PS. 2006. Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex 

in a model of temporal lobe epilepsy. J Neurosci. 26:4613-4623. 

Le Pen G, Grottick AJ, Higgins GA, Moreau JL. 2003. Phencyclidine exacerbates attentional deficits in a 

neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology. 28:1799-1809. 

Lee V, MacKenzie G, Hooper A, Maguire J. 2016. Reduced tonic inhibition in the dentate gyrus contributes to chronic 

stress-induced impairments in learning and memory. Hippocampus. 

Levin JR, Serlin RC, Seaman MA. 1994. A controlled, powerful multiple-comparison strategy for several situations. 

Psychol Bull. 115:153-159. 

Liddle PF, Friston KJ, Frith CD, Hirsch SR, Jones T, Frackowiak RS. 1992. Patterns of cerebral blood flow in 

schizophrenia. Br J Psychiatry. 160:179-186. 

Lisman JE. 1997. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20:38-

43. 

Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. 2008. Circuit-based framework for 

understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31:234-242. 

Lodge DJ, Grace AA. 2011. Hippocampal dysregulation of dopamine system function and the pathophysiology of 

schizophrenia. Trends Pharmacol Sci. 32:507-513. 

Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman AH. 1990. Anatomic organization and physiology of the limbic 

cortex. Physiol Rev. 70:453-511. 

Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, 

Losonczy A. 2014. Dendritic inhibition in the hippocampus supports fear learning. Science. 343:857-863. 

Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun XH, Nicoud JF, Zemelman BV, Sternson SM, Losonczy A. 2012. 

Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci. 15:423-430, S421-423. 

Page 35 of 46 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   

36 

 

Lustig C, Kozak R, Sarter M, Young JW, Robbins TW. 2013. CNTRICS final animal model task selection: control of 

attention. Neurosci Biobehav Rev. 37:2099-2110. 

Marin O. 2012. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 13:107-120. 

McGarrity S, Somerled S, Eaton C, Bast T, Pezze M. 2014. Medial prefrontal cortex is not required, but can modulate, 

hippocampus-dependent behaviour on the watermaze delayed-matching-to-place test. FENS Abstr. 7:1403. 

McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW. 2002. Selective behavioral and neurochemical effects of 

cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-

choice serial reaction time task. J Neurosci. 22:1905-1913. 

Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF. 2005. Regionally specific 

disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry. 

62:379-386. 

Millan MJ, Agid Y, Brune M, Bullmore ET, Carter CS, Clayton NS, Connor R, Davis S, Deakin B, DeRubeis RJ, Dubois B, 

Geyer MA, Goodwin GM, Gorwood P, Jay TM, Joels M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E, Saletu 

B, Spedding M, Sweeney J, Whittington M, Young LJ. 2012. Cognitive dysfunction in psychiatric disorders: 

characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov. 11:141-168. 

Mitchell SN, Yee BK, Feldon J, Gray JA, Rawlins JN. 2000. Activation of the retrohippocampal region in the rat causes 

dopamine release in the nucleus accumbens: disruption by fornix section. Eur J Pharmacol. 407:131-138. 

Morris RG, Halliwell RF, Bowery N. 1989. Synaptic plasticity and learning. II: Do different kinds of plasticity underlie 

different kinds of learning? Neuropsychologia. 27:41-59. 

Murray AJ, Sauer JF, Riedel G, McClure C, Ansel L, Cheyne L, Bartos M, Wisden W, Wulff P. 2011. Parvalbumin-positive 

CA1 interneurons are required for spatial working but not for reference memory. Nat Neurosci. 14:297-299. 

Nava-Mesa MO, Jimenez-Diaz L, Yajeya J, Navarro-Lopez JD. 2014. GABAergic neurotransmission and new strategies of 

neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci. 

8:167. 

Paine TA, O'Hara A, Plaut B, Lowes DC. 2015. Effects of disrupting medial prefrontal cortex GABA transmission on 

decision-making in a rodent gambling task. Psychopharmacology (Berl). 232:1755-1765. 

Paine TA, Slipp LE, Carlezon WA, Jr. 2011. Schizophrenia-like attentional deficits following blockade of prefrontal 

cortex GABAA receptors. Neuropsychopharmacology. 36:1703-1713. 

Paxinos G, Watson C. 1998. The Rat Brain in Stereotaxic Coordinates. New York: Academic Press. 

Pehrson AL, Bondi CO, Totah NK, Moghaddam B. 2013. The influence of NMDA and GABA(A) receptors and glutamic 

acid decarboxylase (GAD) activity on attention. Psychopharmacology (Berl). 225:31-39. 

Peleg-Raibstein D, Pezze MA, Ferger B, Zhang WN, Murphy CA, Feldon J, Bast T. 2005. Activation of dopaminergic 

neurotransmission in the medial prefrontal cortex by N-methyl-d-aspartate stimulation of the ventral 

hippocampus in rats. Neuroscience. 132:219-232. 

Pezze M, Bast T. 2012. Dopaminergic modulation of hippocampus-dependent learning: blockade of hippocampal D1-

class receptors during learning impairs 1-trial place memory at a 30-min retention delay. Neuropharmacology. 

63:710-718. 

Pezze M, McGarrity S, Mason R, Fone KC, Bast T. 2014. Too little and too much: hypoactivation and disinhibition of 

medial prefrontal cortex cause attentional deficits. J Neurosci. 34:7931-7946. 

Pezze MA, Dalley JW, Robbins TW. 2007. Differential roles of dopamine D1 and D2 receptors in the nucleus 

accumbens in attentional performance on the five-choice serial reaction time task. Neuropsychopharmacology. 

32:273-283. 

Prut L, Prenosil G, Willadt S, Vogt K, Fritschy JM, Crestani F. 2010. A reduction in hippocampal GABAA receptor alpha5 

subunits disrupts the memory for location of objects in mice. Genes Brain Behav. 9:478-488. 

Romberg C, Bussey TJ, Saksida LM. 2013. Paying more attention to attention: towards more comprehensive cognitive 

translation using mouse models of Alzheimer's disease. Brain Res Bull. 92:49-55. 

Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM. 2011. Impaired attention in the 3xTgAD mouse model of 

Alzheimer's disease: rescue by donepezil (Aricept). J Neurosci. 31:3500-3507. 

Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsaki G. 2012. Control of timing, rate and bursts of 

hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci. 15:769-775. 

Ruediger S, Spirig D, Donato F, Caroni P. 2012. Goal-oriented searching mediated by ventral hippocampus early in trial-

and-error learning. Nat Neurosci. 15:1563-1571. 

Ruzicka WB, Subburaju S, Benes FM. 2015. Circuit- and Diagnosis-Specific DNA Methylation Changes at gamma-

Aminobutyric Acid-Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder. 

JAMA Psychiatry. 72:541-551. 

Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, Inbar BP, Corcoran CM, Lieberman JA, Moore H, 

Small SA. 2013. Imaging patients with psychosis and a mouse model establishes a spreading pattern of 

hippocampal dysfunction and implicates glutamate as a driver. Neuron. 78:81-93. 

Page 36 of 46Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   

37 

 

Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D, Small SA. 2009. Differential targeting of 

the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen 

Psychiatry. 66:938-946. 

Sokoloff L. 1981. Localization of functional activity in the central nervous system by measurement of glucose 

utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab. 1:7-36. 

Spooner RI, Thomson A, Hall J, Morris RG, Salter SH. 1994. The Atlantis platform: a new design and further 

developments of Buresova's on-demand platform for the water maze. Learn Mem. 1:203-211. 

Stanley EM, Fadel JR, Mott DD. 2012. Interneuron loss reduces dendritic inhibition and GABA release in hippocampus 

of aged rats. Neurobiol Aging. 33:431 e431-413. 

Steele RJ, Morris RG. 1999. Delay-dependent impairment of a matching-to-place task with chronic and 

intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus. 9:118-136. 

Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. 2008. Realistic expectations of prepulse inhibition in translational 

models for schizophrenia research. Psychopharmacology (Berl). 199:331-388. 

Takahashi H, Magee JC. 2009. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 

pyramidal neurons. Neuron. 62:102-111. 

Tregellas JR, Smucny J, Harris JG, Olincy A, Maharajh K, Kronberg E, Eichman LC, Lyons E, Freedman R. 2014. Intrinsic 

hippocampal activity as a biomarker for cognition and symptoms in schizophrenia. Am J Psychiatry. 171:549-556. 

Tse MT, Piantadosi PT, Floresco SB. 2015. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive 

function: drawing links to schizophrenia from preclinical research. Biol Psychiatry. 77:929-939. 

Xu W, Morishita W, Buckmaster PS, Pang ZP, Malenka RC, Sudhof TC. 2012. Distinct neuronal coding schemes in 

memory revealed by selective erasure of fast synchronous synaptic transmission. Neuron. 73:990-1001. 

 

Page 37 of 46 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   

38 

 

 

Table 1. Performance measures (mean±SEM) in the 5CSRT experiments  

Experiment %accuracy %omissions %premature 

responses 

%perseverative 

responses 

Number 

of trials 

Correct 

latency (s) 

Collect 

latency (s) 

Picrotoxin, 25 and 

75ng/side 

       

Saline 79.4±1.9 11.3±2.1 15.1±3.8   9.8±3.9 92.5±3.8 0.58±0.03 1.31±0.12 

25ng 81.2±2.2 10.2±2.3 11.2±1.8 11.8±3.7 94.3±3.9 0.57±0.03 1.32±0.11 
75ng 76.8±3.1 12.2±2.0 11.9±1.7   8.4±2.2 91.7±4.0 0.61±0.02 1.28±0.10 

Main effect of 

drug infusion 

F2,18=1.45, 

P=0.26 

F2,18<1 F2,18<1 F2,18=1.53, P=0.24 F2,18<1 F2,18<1 F2,18<1 

Picrotoxin, 75 and 

150ng/side 

       

Saline 81.8±1.1 14.1±3.7 12.0±1.8 7.0±1.9 96.7±1.9 0.60±0.03 1.55±0.17 

75ng 80.5±1.2 11.8±1.9 14.0±2.1 8.5±1.9 97.9±1.7 0.59±0.02 1.35±0.13 

150ng 74.9±2.8 14.4±1.7 13.0±3.8 6.4±2.1 96.1±2.5 0.64±0.05 1.50±0.18 

Main effect of 

drug infusion 

F2,18=6.57, 

P=0.007 

F2,18<1 F2,18<1 F2,18=2.78, P=0.09 F2,18<1 F2,18<1 F2,18=1.67, 

P=0.22 

 

 

 

Table 2. Pre-infusion baseline values (mean+SEM) of all electrophyisiological measures recorded from the hippocampal electrodes in the two 

prospective infusion groups  

 Overall firing 

rate (1/s) 

Bursts 

(1/min) 

% spikes 

fired in 

bursts 

Within-burst 

firing rate 

Burst 

duration 

(ms) 

Interburst 

interval (s) 

LFP 

AUC of PSD 

(µV2) 

Saline 42.1±11.8 265.5±75.5 28.8±3.9 381.3±6.1 10.1±0.5 6.6±1.7 0.0411±0.0035 

Picrotoxin (150 ng) 35.4±3.4 251.11±27.7 25.6±1.6 401.8±4.9 9.2±0.2 4.4±0.8 0.0303±0.0025 

        

Effect of infusion F1,13<1 F1,13<1 F1,13<1 F1,13=1.2, P=0.3 F1,13<1 F1,13<1 F1,13=1.4, P=0.3 
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FIGURE CAPTIONS 

FIGURE 1 Infusion cannula placements in the behavioral studies. A Cresyl violet-stained section 

showing an exemplar infusion site in the temporal hippocampus. The section was taken from a rat 

that participated in the watermaze experiment. B Approximate locations of infusion cannula tips 

(dots) in the temporal to intermediate hippocampus, depicted separately for the different 

experiments. Locations are shown on coronal plates adapted from Paxinos and Watson (1998), with 

numbers indicating distance from bregma in millimeters.  

 

FIGURE 2 Sensorimotor effects. A Hippocampal picrotoxin reduces startle reactivity, but does not 

affect PPI: Mean startle magnitude on pulse-alone trials (mean±SEM) for the three test blocks 

(block 1, 10 consecutive pulse-alone trials; block 2, 10 pulse-alone trials interspersed with 

prepulse+pulse trials; block 3, 5 consecutive pulse-alone trials) and mean %PPI at the different 

prepulse intensities following infusion of saline or 150 ng of picrotoxin. Asterisk indicates 

significant interaction infusion X test block. B Hippocampal picrotoxin increases locomotor 

activity: Locomotor activity measured as photo beam breaks (mean ± SEM) did not differ between 

groups during the 30 min preceding infusion; hippocampal picrotoxin infusions (50, 75, 150 ng per 

side) increased activity as compared to saline infusion. Asterisk indicates significant interaction 

infusion X 10-min block. 

 

FIGURE 3 Hippocampal picrotoxin causes attentional deficits on the 5CSRT test. Attention, 

measured as % accuracy ([correct responses / (correct responses + incorrect responses)] * 100 %, 

mean+SEM), was dose-dependently reduced by hippocampal picrotoxin infusion. Asterisk indicates 

significant difference as compared to saline condition. 

 

FIGURE 4 Hippocampal disinhibition impairs 1-trial place memory performance on the 

watermaze DMP test. A Percentage of time spent in the correct zone (mean+SEM) during probe 
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trials was dose-dependently reduced by hippocampal picrotoxin infusion. The asterisk indicates a 

significant difference as compared to the saline condition. The horizontal line represents chance 

performance. B Path lengths (mean±SEM) to reach the platform location were increased across all 4 

trials following infusion of picrotoxin, with the most pronounced difference on trial 2. Rats only 

showed a significant path length reduction from trial 1 to 2 (indicated by asterisk) following saline 

infusion, but not following picrotoxin infusions. 

 

FIGURE 5 Picrotoxin increases overall firing rate and markedly enhances bursting within the 

hippocampus. A Placement of infusion-electrode array assembly: The photograph on the left shows 

the assembly of infusion cannula and 8-microwire-electrode array used to measure effects of drug 

microinfusions on hippocampal neural activity. The array was arranged perpendicular to the midline 

of the brain, with the infusion cannula located just posterior to the center of the array. The 

photograph on the right shows an exemplar coronal section through the hippocampus with markings 

(highlighted by white arrow heads) from the most medial and most lateral electrodes of the array. In 

this case, the two most laterally located electrodes were located outside of the hippocampus. 

Underneath the photographs, the approximate locations of markings from the most medial (black 

dots) and most lateral (gray dots) electrodes for all rats included in the electrophysiological studies 

are shown on coronal plates from Paxinos and Watson (1998), with numbers indicating distance 

from bregma in millimeters. Based on the locations of the markings, the most medial and/or the 

most lateral electrodes, typically one to three electrodes per rat, were located outside the 

hippocampus in all rats. Data recorded from electrodes placed outside hippocampus were analyzed 

separately from data recorded from the hippocampus, providing a control measure for drug spread 

outside the hippocampus. B Data recorded at electrodes placed within the hippocampus: Time 

courses of multi-unit measures during baseline recordings and following infusion of picrotoxin or 

saline. All values are normalized to baseline (average of the six baseline 5-min blocks) and are 

presented as means±SEM. The stippled horizontal line indicates baseline and the arrow indicates 
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the time of infusion. C Data recorded at electrodes placed just outside hippocampus: Time courses 

of the multi-unit measures (all values normalized to baseline, means±SEM) that showed marked 

effects of picrotoxin infusion when recorded within hippocampus. Note absence of any clear 

picrotoxin effect, supporting that drug spread was largely restricted to within the hippocampus. 
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FIGURE 1 Infusion cannula placements in the behavioral studies. A Cresyl violet-stained section showing an 
exemplar infusion site in the temporal hippocampus. The section was taken from a rat that participated in 
the watermaze experiment. B Approximate locations of infusion cannula tips (dots) in the temporal to 

intermediate hippocampus, depicted separately for the different experiments. Locations are shown on 
coronal plates adapted from Paxinos and Watson (1998), with numbers indicating distance from bregma in 

millimeters.  
Fig. 1  
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FIGURE 2 Sensorimotor effects. A Hippocampal picrotoxin reduces startle reactivity, but does not affect PPI: 
Mean startle magnitude on pulse-alone trials (mean±SEM) for the three test blocks (block 1, 10 consecutive 

pulse-alone trials; block 2, 10 pulse-alone trials interspersed with prepulse+pulse trials; block 3, 5 
consecutive pulse-alone trials) and mean %PPI at the different prepulse intensities following infusion of 

saline or 150 ng of picrotoxin. Asterisk indicates significant interaction infusion X test block. B Hippocampal 
picrotoxin increases locomotor activity: Locomotor activity measured as photo beam breaks (mean ± SEM) 
did not differ between groups during the 30 min preceding infusion; hippocampal picrotoxin infusions (50, 

75, 150 ng per side) increased activity as compared to saline infusion. Asterisk indicates significant 

interaction infusion X 10-min block.  
Fig. 2  
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FIGURE 3 Hippocampal picrotoxin causes attentional deficits on the 5CSRT test. Attention, measured as % 
accuracy ([correct responses / (correct responses + incorrect responses)] * 100 %, mean+SEM), was dose-

dependently reduced by hippocampal picrotoxin infusion. Asterisk indicates significant difference as 

compared to saline condition.  
Fig. 3  
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FIGURE 4 Hippocampal disinhibition impairs 1-trial place memory performance on the watermaze DMP test. 
A Percentage of time spent in the correct zone (mean+SEM) during probe trials was dose-dependently 
reduced by hippocampal picrotoxin infusion. The asterisk indicates a significant difference as compared to 
the saline condition. The horizontal line represents chance performance. B Path lengths (mean±SEM) to 
reach the platform location were increased across all 4 trials following infusion of picrotoxin, with the most 
pronounced difference on trial 2. Rats only showed a significant path length reduction from trial 1 to 2 

(indicated by asterisk) following saline infusion, but not following picrotoxin infusions.  
Fig. 4  
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FIGURE 5 Picrotoxin increases overall firing rate and markedly enhances bursting within the hippocampus. A 
Placement of infusion-electrode array assembly: The photograph on the left shows the assembly of infusion 
cannula and 8-microwire-electrode array used to measure effects of drug microinfusions on hippocampal 
neural activity. The array was arranged perpendicular to the midline of the brain, with the infusion cannula 
located just posterior to the center of the array. The photograph on the right shows an exemplar coronal 
section through the hippocampus with markings (highlighted by white arrow heads) from the most medial 
and most lateral electrodes of the array. In this case, the two most laterally located electrodes were located 
outside of the hippocampus. Underneath the photographs, the approximate locations of markings from the 

most medial (black dots) and most lateral (gray dots) electrodes for all rats included in the 
electrophysiological studies are shown on coronal plates from Paxinos and Watson (1998), with numbers 
indicating distance from bregma in millimeters. Based on the locations of the markings, the most medial 
and/or the most lateral electrodes, typically one to three electrodes per rat, were located outside the 
hippocampus in all rats. Data recorded from electrodes placed outside hippocampus were analyzed 

separately from data recorded from the hippocampus, providing a control measure for drug spread outside 
the hippocampus. B Data recorded at electrodes placed within the hippocampus: Time courses of multi-unit 
measures during baseline recordings and following infusion of picrotoxin or saline. All values are normalized 

to baseline (average of the six baseline 5-min blocks) and are presented as means±SEM. The stippled 
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horizontal line indicates baseline and the arrow indicates the time of infusion. C Data recorded at electrodes 
placed just outside hippocampus: Time courses of the multi-unit measures (all values normalized to 
baseline, means±SEM) that showed marked effects of picrotoxin infusion when recorded within 

hippocampus. Note absence of any clear picrotoxin effect, supporting that drug spread was largely restricted 
to within the hippocampus.  

Fig. 5  
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