70 research outputs found
Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology
<p>Abstract</p> <p>Background</p> <p>Ascochyta blight, caused by <it>Mycosphaerella pinodes </it>is one of the most important pea pathogens. However, little is known about the genes and mechanisms of resistance acting against <it>M. pinodes </it>in pea. Resistance identified so far to this pathogen is incomplete, polygenic and scarce in pea, being most common in <it>Pisum </it>relatives. The identification of the genes underlying resistance would increase our knowledge about <it>M. pinodes-</it>pea interaction and would facilitate the introgression of resistance into pea varieties. In the present study differentially expressed genes in the resistant <it>P. sativum </it>ssp. <it>syriacum </it>accession P665 comparing to the susceptible pea cv. Messire after inoculation with <it>M. pinodes </it>have been identified using a <it>M. truncatula </it>microarray.</p> <p>Results</p> <p>Of the 16,470 sequences analysed, 346 were differentially regulated. Differentially regulated genes belonged to almost all functional categories and included genes involved in defense such as genes involved in cell wall reinforcement, phenylpropanoid and phytoalexins metabolism, pathogenesis- related (PR) proteins and detoxification processes. Genes associated with jasmonic acid (JA) and ethylene signal transduction pathways were induced suggesting that the response to <it>M. pinodes </it>in pea is regulated via JA and ET pathways. Expression levels of ten differentially regulated genes were validated in inoculated and control plants using qRT-PCR showing that the P665 accession shows constitutively an increased expression of the defense related genes as peroxidases, disease resistance response protein 39 (DRR230-b), glutathione S-transferase (GST) and 6a-hydroxymaackiain methyltransferase.</p> <p>Conclusions</p> <p>Through this study a global view of genes expressed during resistance to <it>M. pinodes </it>has been obtained, giving relevant information about the mechanisms and pathways conferring resistance to this important disease. In addition, the <it>M. truncatula </it>microarray represents an efficient tool to identify candidate genes controlling resistance to <it>M. pinodes </it>in pea.</p
Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis
Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGFβ1 is a key upstream transcriptome regulator in AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4α-dependent gene expression. We conclude that targeting TGFβ1 and epigenetic drivers that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH
Anthropology and GIS: Temporal and Spatial Distribution of the Philippine Negrito Groups
The Philippine negrito groups comprise a diverse group of populations speaking over 30 different languages, who are spread all over the archipelago, mostly in marginal areas of Luzon Island in the north, the central Visayas islands, and Mindanao in the south. They exhibit physical characteristics that are different from more than 100 Philippine ethnolinguistic groups that are categorized as non-negritos. Given their numbers, it is not surprising that Philippine negritos make up a major category in a number of general ethnographic maps produced since the nineteenth century. Reports from various ethnological surveys during this period, however, have further enriched our understanding regarding the extent and distribution of negrito populations. Using the data contained in these reports, it is possible to plot and create a map showing the historical locations and distribution of negrito groups. Using geographic information systems (GIS), the location and distribution of negrito groups at any given time can be overlaid on historical or current maps. In the present study, a GIS layer was compiled and extracted from the 2000 Philippine Census of population at the village level and overlaid on existing maps of the Philippines. The maps that were generated from this project will complement ongoing anthropological and genetic studies of negrito groups that inhabit different locations within the Philippine archipelago
Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance
Recent studies on plant immunity have suggested that a pathogen should suppress induced plant defense in order to infect a plant species, which otherwise would have been a nonhost to the pathogen. For this purpose, pathogens exploit effector molecules to interfere with different layers of plant defense responses. In this review, we summarize the latest findings on plant factors that are activated by pathogen effectors to suppress plant immunity. By looking from a different point of view into host and nonhost resistance, we propose a novel breeding strategy: disabling plant disease susceptibility genes (S-genes) to achieve durable and broad-spectrum resistance
Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis
Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of
molecular drivers is hampered by the lack of suitable animal models. By performing RNA
sequencing in livers from patients with different phenotypes of alcohol-related liver disease
(ALD), we show that development of AH is characterized by defective activity of liverenriched transcription factors (LETFs). TGFβ1 is a key upstream transcriptome regulator in
AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective
metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not
associated with the development of AH. In contrast, epigenetic studies show that AH livers
have profound changes in DNA methylation state and chromatin remodeling, affecting
HNF4α-dependent gene expression. We conclude that targeting TGFβ1 and epigenetic drivers
that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH
Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects
The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability
La conservación de la montaña alpina española y el bienestar humano
19 páginasPeer reviewe
- …