8 research outputs found

    Nanocristaux, films et cellules photovoltaĂŻques de Cu2ZnSn(SSe)4 par impression d'encres

    Get PDF
    Cu2ZnSnSSe4 (CZTSSe) est un matĂ©riau prometteur comme absorbant de cellules photovoltaĂŻques. Le dĂ©veloppement Ă  grande Ă©chelle de cellules solaires CZTSSe est conditionnĂ© au dĂ©veloppement de procĂ©dĂ©s bas coĂ»t et soucieux de l'environnement. Dans ce contexte, le dĂ©veloppement de films de CZTSSe Ă  partir d'encres tout aqueuses de nanoparticules de CZTS constitue un challenge intĂ©ressant. Une stratĂ©gie haute tempĂ©rature en prĂ©sence d'un agent texturant gaz a Ă©tĂ© dĂ©finie pour synthĂ©tiser des nanocristaux de CZTS prĂ©sentant des surfaces polaires. Notre procĂ©dĂ© agent texturant gaz met en Ɠuvre la formation simultanĂ©e de nuclĂ©is de CZTS et de bulles de gaz. Nous montrons que la production en conditions de forte sursaturation d'une trĂšs forte concentration de nuclĂ©is de CZTS en association Ă  un trĂšs grand nombre de petites bulles de gaz reprĂ©sente les conditions optimales de formation de nanocristaux. Par une Ă©tude Ă©lectrocinĂ©tique, une condensation rĂ©gulĂ©e par la taille de l'ion alcalin est observĂ©e dans la sĂ©rie des alcalins Li+ < Na+ < K+ < Rb+ < Cs+, dĂ©montrant la stabilitĂ© chimique des surfaces de Cu2ZnSnS4 en dispersion toute aqueuse. Par mise en Ɠuvre des dispersions tout aqueuses, nous avons rĂ©alisĂ© l'acquisition de donnĂ©es de base permettant de produire une preuve de concept de la formation d'un film sans fissures. Un autre point important Ă  considĂ©rer lors de l'utilisation de matiĂšres premiĂšres bas coĂ»t est l'Ă©limination des impuretĂ©s inhibitrices de la croissance des grains. Un profil spĂ©cifique de recuit des films est proposĂ© mettant en Ɠuvre une purification haute tempĂ©rature pour l'Ă©limination du carbone. En effet, notre stratĂ©gie met en Ɠuvre la dĂ©composition des domaines amorphes en carbone sp2 qui est ultĂ©rieurement Ă©liminĂ© via la formation de CSe2 gazeux. Finalement, des cellules solaires ont Ă©tĂ© fabriquĂ©es avec succĂšs Ă  partir d'encres tout aqueuses avec des rendements de conversion prĂ©liminaires jusqu'Ă  2,6 %.Recently more attention is devoted to Cu2ZnSnS4 (CZTSSe) for photovoltaic applications due to their non-toxic, earth-abundant components and good optoelectronic properties. Large scale fabrication of CZTSSe solar cells will rely on the development of low-cost and environmentally-friendly approach. In this context, development of CZTSSe films from all-aqueous CZTS nanocrystals inks represents an interesting challenge. A high temperature, gas-templating strategy has been defined to synthesize highly crystallized CZTS nanocrystals displaying polar surfaces. Our gas-templating process involves the simultaneous formation of CZTS nucleis and gas bubbles. We demonstrate that production of a high rate of small gas bubbles, as well as a high concentration of nucleis, depict optimal conditions for nanocrystal synthesis. By an electrokinetic investigation, a condensation regulation by the alkali ion size is observed in the alkali series Li+ < Na+ < K+ < Rb+ < Cs+, demonstrating the chemical stability of CZTS surfaces in aqueous basic dispersions. By using all-aqueous chalcogenide nanocrystals dispersions, we determined a critical cracking thickness of 250 nm and an average thickness of 100 nm to fabricate micron crack-free films using a multilayer procedure. Having in mind these results, we give the proof of concept of crack-free film formation from all aqueous CZTS nanocrystals inks. Another important consideration, when employing low-cost materials, is the removal of impurities, inhibitors of grain growth. A specific annealing profile is proposed involving a high temperature purification step in order to remove carbon. Indeed, our strategy involves the decomposition of amorphous domains into sp2 carbon which will be further removed via the CSe2gas formation. Finally, CZTSSe solar cells are successfully fabricated from all-aqueous CZTS inks with preliminary devices efficiencies up of 2.6%

    A gas-templating strategy to synthesize CZTS nanocrystals for environment-friendly solar inks

    Get PDF
    A high-temperature gas-templating strategy is proposed to synthesize Cu2ZnSnS4 (CZTS) nanocrystals for all-aqueous solar inks. Our gas templating process route involves the in-situ generation and stabilization of nanosized gas bubbles into a molten KSCN-based reaction mixture at 400 °C. Chemical insights of the templating gas process are provided such as the simultaneous formation of gas bubbles and CZTS nuclei highlighting the crucial role of the nucleation stage on the sponge and resulting nanocrystals properties. The high porosity displayed by the resulting CZTS nanocrystals facilitates their further post-fragmentation, yielding individualized nanocrystals. The advantages of our high temperature gas templating route are illustrated by the following: (i) the low defect concentration displayed by the highly crystalline nanocrystals, (ii) the synthesis of CZTS nanocrystals displaying S2− polar surfaces after ligand exchange. The good photoluminescence properties recorded on the pure CZTS nanocrystals reveal potential for exploration of new complex chalcogenide nanocrystals useful for various applications including photovoltaics and water splitting. Here we demonstrate that using these building blocks, a CZTS solar cell can be successfully fabricated from an environment-friendly all-aqueous ink

    CZTSSe nanocrystals, liquid processed films and solar cells

    No full text
    Cu2ZnSnSSe4 (CZTSSe) est un matĂ©riau prometteur comme absorbant de cellules photovoltaĂŻques. Le dĂ©veloppement Ă  grande Ă©chelle de cellules solaires CZTSSe est conditionnĂ© au dĂ©veloppement de procĂ©dĂ©s bas coĂ»t et soucieux de l'environnement. Dans ce contexte, le dĂ©veloppement de films de CZTSSe Ă  partir d'encres tout aqueuses de nanoparticules de CZTS constitue un challenge intĂ©ressant. Une stratĂ©gie haute tempĂ©rature en prĂ©sence d'un agent texturant gaz a Ă©tĂ© dĂ©finie pour synthĂ©tiser des nanocristaux de CZTS prĂ©sentant des surfaces polaires. Notre procĂ©dĂ© agent texturant gaz met en Ɠuvre la formation simultanĂ©e de nuclĂ©is de CZTS et de bulles de gaz. Nous montrons que la production en conditions de forte sursaturation d'une trĂšs forte concentration de nuclĂ©is de CZTS en association Ă  un trĂšs grand nombre de petites bulles de gaz reprĂ©sente les conditions optimales de formation de nanocristaux. Par une Ă©tude Ă©lectrocinĂ©tique, une condensation rĂ©gulĂ©e par la taille de l'ion alcalin est observĂ©e dans la sĂ©rie des alcalins Li+ < Na+ < K+ < Rb+ < Cs+, dĂ©montrant la stabilitĂ© chimique des surfaces de Cu2ZnSnS4 en dispersion toute aqueuse. Par mise en Ɠuvre des dispersions tout aqueuses, nous avons rĂ©alisĂ© l'acquisition de donnĂ©es de base permettant de produire une preuve de concept de la formation d'un film sans fissures. Un autre point important Ă  considĂ©rer lors de l'utilisation de matiĂšres premiĂšres bas coĂ»t est l'Ă©limination des impuretĂ©s inhibitrices de la croissance des grains. Un profil spĂ©cifique de recuit des films est proposĂ© mettant en Ɠuvre une purification haute tempĂ©rature pour l'Ă©limination du carbone. En effet, notre stratĂ©gie met en Ɠuvre la dĂ©composition des domaines amorphes en carbone sp2 qui est ultĂ©rieurement Ă©liminĂ© via la formation de CSe2 gazeux. Finalement, des cellules solaires ont Ă©tĂ© fabriquĂ©es avec succĂšs Ă  partir d'encres tout aqueuses avec des rendements de conversion prĂ©liminaires jusqu'Ă  2,6 %.Recently more attention is devoted to Cu2ZnSnS4 (CZTSSe) for photovoltaic applications due to their non-toxic, earth-abundant components and good optoelectronic properties. Large scale fabrication of CZTSSe solar cells will rely on the development of low-cost and environmentally-friendly approach. In this context, development of CZTSSe films from all-aqueous CZTS nanocrystals inks represents an interesting challenge. A high temperature, gas-templating strategy has been defined to synthesize highly crystallized CZTS nanocrystals displaying polar surfaces. Our gas-templating process involves the simultaneous formation of CZTS nucleis and gas bubbles. We demonstrate that production of a high rate of small gas bubbles, as well as a high concentration of nucleis, depict optimal conditions for nanocrystal synthesis. By an electrokinetic investigation, a condensation regulation by the alkali ion size is observed in the alkali series Li+ < Na+ < K+ < Rb+ < Cs+, demonstrating the chemical stability of CZTS surfaces in aqueous basic dispersions. By using all-aqueous chalcogenide nanocrystals dispersions, we determined a critical cracking thickness of 250 nm and an average thickness of 100 nm to fabricate micron crack-free films using a multilayer procedure. Having in mind these results, we give the proof of concept of crack-free film formation from all aqueous CZTS nanocrystals inks. Another important consideration, when employing low-cost materials, is the removal of impurities, inhibitors of grain growth. A specific annealing profile is proposed involving a high temperature purification step in order to remove carbon. Indeed, our strategy involves the decomposition of amorphous domains into sp2 carbon which will be further removed via the CSe2gas formation. Finally, CZTSSe solar cells are successfully fabricated from all-aqueous CZTS inks with preliminary devices efficiencies up of 2.6%

    Nanocristaux, films et cellules photovoltaĂŻques de Cu2ZnSn(SSe)4 par impression d'encres

    Get PDF
    Recently more attention is devoted to Cu2ZnSnS4 (CZTSSe) for photovoltaic applications due to their non-toxic, earth-abundant components and good optoelectronic properties. Large scale fabrication of CZTSSe solar cells will rely on the development of low-cost and environmentally-friendly approach. In this context, development of CZTSSe films from all-aqueous CZTS nanocrystals inks represents an interesting challenge. A high temperature, gas-templating strategy has been defined to synthesize highly crystallized CZTS nanocrystals displaying polar surfaces. Our gas-templating process involves the simultaneous formation of CZTS nucleis and gas bubbles. We demonstrate that production of a high rate of small gas bubbles, as well as a high concentration of nucleis, depict optimal conditions for nanocrystal synthesis. By an electrokinetic investigation, a condensation regulation by the alkali ion size is observed in the alkali series Li+ < Na+ < K+ < Rb+ < Cs+, demonstrating the chemical stability of CZTS surfaces in aqueous basic dispersions. By using all-aqueous chalcogenide nanocrystals dispersions, we determined a critical cracking thickness of 250 nm and an average thickness of 100 nm to fabricate micron crack-free films using a multilayer procedure. Having in mind these results, we give the proof of concept of crack-free film formation from all aqueous CZTS nanocrystals inks. Another important consideration, when employing low-cost materials, is the removal of impurities, inhibitors of grain growth. A specific annealing profile is proposed involving a high temperature purification step in order to remove carbon. Indeed, our strategy involves the decomposition of amorphous domains into sp2 carbon which will be further removed via the CSe2gas formation. Finally, CZTSSe solar cells are successfully fabricated from all-aqueous CZTS inks with preliminary devices efficiencies up of 2.6%.Cu2ZnSnSSe4 (CZTSSe) est un matĂ©riau prometteur comme absorbant de cellules photovoltaĂŻques. Le dĂ©veloppement Ă  grande Ă©chelle de cellules solaires CZTSSe est conditionnĂ© au dĂ©veloppement de procĂ©dĂ©s bas coĂ»t et soucieux de l'environnement. Dans ce contexte, le dĂ©veloppement de films de CZTSSe Ă  partir d'encres tout aqueuses de nanoparticules de CZTS constitue un challenge intĂ©ressant. Une stratĂ©gie haute tempĂ©rature en prĂ©sence d'un agent texturant gaz a Ă©tĂ© dĂ©finie pour synthĂ©tiser des nanocristaux de CZTS prĂ©sentant des surfaces polaires. Notre procĂ©dĂ© agent texturant gaz met en Ɠuvre la formation simultanĂ©e de nuclĂ©is de CZTS et de bulles de gaz. Nous montrons que la production en conditions de forte sursaturation d'une trĂšs forte concentration de nuclĂ©is de CZTS en association Ă  un trĂšs grand nombre de petites bulles de gaz reprĂ©sente les conditions optimales de formation de nanocristaux. Par une Ă©tude Ă©lectrocinĂ©tique, une condensation rĂ©gulĂ©e par la taille de l'ion alcalin est observĂ©e dans la sĂ©rie des alcalins Li+ < Na+ < K+ < Rb+ < Cs+, dĂ©montrant la stabilitĂ© chimique des surfaces de Cu2ZnSnS4 en dispersion toute aqueuse. Par mise en Ɠuvre des dispersions tout aqueuses, nous avons rĂ©alisĂ© l'acquisition de donnĂ©es de base permettant de produire une preuve de concept de la formation d'un film sans fissures. Un autre point important Ă  considĂ©rer lors de l'utilisation de matiĂšres premiĂšres bas coĂ»t est l'Ă©limination des impuretĂ©s inhibitrices de la croissance des grains. Un profil spĂ©cifique de recuit des films est proposĂ© mettant en Ɠuvre une purification haute tempĂ©rature pour l'Ă©limination du carbone. En effet, notre stratĂ©gie met en Ɠuvre la dĂ©composition des domaines amorphes en carbone sp2 qui est ultĂ©rieurement Ă©liminĂ© via la formation de CSe2 gazeux. Finalement, des cellules solaires ont Ă©tĂ© fabriquĂ©es avec succĂšs Ă  partir d'encres tout aqueuses avec des rendements de conversion prĂ©liminaires jusqu'Ă  2,6 %

    Chemical insights into the formation of Cu 2 ZnSnS 4 films from all-aqueous dispersions for low-cost solar cells

    No full text
    International audienceCu2ZnSnS4 (CZTS) shows great potential for photovoltaic application because of its non-toxic earth-abundant components and good optoelectronic properties. Combining low-cost and environmentally friendly routes would be the most favorable approach for the development of CZTS solar cells. In this context, development of Cu2ZnSnS4 (CZTS) films from all-aqueous CZTS nanocrystals inks represents an interesting challenge. Here, we have highlighted a condensation regulation by the alkali ion size observed in the alkali series Li+ < Na+ < K+ < Rb+ < Cs+, and demonstrated the chemical stability of Cu2ZnSnS4 surfaces in basic aqueous dispersions. Data such as optimal nanocrystal size, critical cracking thickness and average thickness to fabricate micron crack-free films from all-aqueous chalcogenide nanocrystals dispersions were determined. From these results, a proof of concept for the formation of a crack-free film of 2.2 ÎŒm formed from an all-aqueous CZTS nanocrystals ink is given. When employing low-cost materials, removal of carbon impurities represents another important challenge. With the objective to fabricate residue-free films, a specific annealing strategy is proposed involving a high temperature purification step under Se partial pressure. Carbon removal is thus achieved via the CSe2 gas formation, simultaneously to the amorphous domains crystallization as demonstrated by Raman spectroscopy. These source data favoring the formation of residue-free, crack-free, annealed films should assist the large scale development of CZTS solar cells from low-cost and environmentally friendly, all –aqueous inks

    Water-soluble, heterometallic chalcogenide oligomers as building blocks for functional films

    Get PDF
    International audienceMonometallic chalcogenide aqueous complexes such as (Sn2S6)4− and (Sn4S10)4− are widely used as functional ligands with applications in nano-electronics and solar cells. We propose a general process route to the formation of all-inorganic, heterometallic chalcogenide oligomers, thus expanding the range of these functional aqueous ligands. From electrospray ionization mass spectrometry, tetramers were shown to be the most predominant oligomers synthesized in Sn(IV)–Zn(II)–S(II), Sn(IV)–Zn(II)–Se(II) and Sn(IV)–Ga(III)–S(II) systems. While tetramers possessing exclusively one Zn cation were identified in the Sn(IV)–Zn(II)–S(II) system, the full range of solid solutions was achieved for (Sna–Gab–Sc)t− oligomers with 1 ≀ a ≀ 4. Using in situ characterization by 119Sn liquid NMR and Raman spectroscopy, supported by DFT calculations, we demonstrate that the various tetramers adopt a compact adamantane-like structure. The charge of the heterometallic oligomers was shown to be controlled by the doping cation valence and the chalcogenide anion deficiency in the tetramers. These water-soluble heterometallic chalcogenide oligomers can serve as ligands, residue-free dispersants or building blocks for functional film fabrication. Using these oligomers, we report here the fabrication of chalcogenide solar cells employing environmentally friendly, all-aqueous, (Sna–Znb–Sc)t−-capped CZTS nanocrystal inks
    corecore