6 research outputs found

    Aerosol size-resolved trace metal composition in remote northern tropical atlantic marine environment: Case study cape verde islands

    Get PDF
    Size-resolved trace metal concentrations of 15 elements in aerosol particles at the Cape Verde Atmospheric Observatory (CVAO) under remote background conditions were investigated through analysis of aerosol samples collected during intensive field studies from January 2007 to November 2011 using total reflection x-ray fluorescence (TXRF). The identification of the main air mass origin that influence remote marine aerosol in the northern tropical Atlantic has been investigated. In total, 317 samples were collected. The dataset was analyzed according to the main air mass inflow at the station. We found that remote conditions make up about 45% of the meteorological conditions in a year at CVAO and thus the northern tropical Atlantic. Surprisingly, air masses from North America are often responsible for higher trace metal concentrations in this region. Elements such as Zn, Pb, Cu, Cr, Ni, and V were mostly found in the submicron size fractions, while elements with dominant crustal or oceanic origin such as Fe, Ti, Mn, Sr, and Rb were found in the coarse fractions (>1 μm). The highest metal concentrations, especially for Zn (3.23 ng m−3), Cu (0.81 ng m−3), Sr (2.63 ng m−3), and Cr (0.53 ng m−3), were observed in air masses originating from North America and the concentrations were within the same concentration range to those reported previously in the literature for remote marine aerosols. Fe (12.26 ng m−3), Ti (0.91 ng m−3), and Mn (0.35 ng m−3) showed higher concentrations when air mass came from Europe and the Canary Islands. Pb concentration was low (20) for Zn, Cu, Ni, Cr, Pb, and Se. The observed enrichment of the elements was attributed to crustal, marine, anthropogenic, and biogenic sources, as well as long-range transport and resuspension. Zn, Cu and Pb were indicators of anthropogenic activities, while Ti and Sr were indicators of crustal and marine origin, respectively. Oceanic and biogenic emissions might have contributed to most of the Se observed. This work provides the first long-term size-resolved trace metals study for remote tropical northern Atlantic marine aerosols and the dataset could serve as good initiation of yearly flux estimates

    Trace metal characterization of aerosol particles and cloud water during HCCT 2010

    Get PDF
    Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2–111.6 and 1.1–32.1 ng m−3, respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L−1, respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L−1. In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol–cloud interaction did not lead to a marked increase in soluble trace metal concentrations; rather it led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces

    Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    Get PDF
    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets
    corecore