310 research outputs found

    Inferring Causal Relationships Between Risk Factors and Outcomes from Genome-Wide Association Study Data.

    Get PDF
    An observational correlation between a suspected risk factor and an outcome does not necessarily imply that interventions on levels of the risk factor will have a causal impact on the outcome (correlation is not causation). If genetic variants associated with the risk factor are also associated with the outcome, then this increases the plausibility that the risk factor is a causal determinant of the outcome. However, if the genetic variants in the analysis do not have a specific biological link to the risk factor, then causal claims can be spurious. We review the Mendelian randomization paradigm for making causal inferences using genetic variants. We consider monogenic analysis, in which genetic variants are taken from a single gene region, and polygenic analysis, which includes variants from multiple regions. We focus on answering two questions: When can Mendelian randomization be used to make reliable causal inferences, and when can it be used to make relevant causal inferences? Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 19 is August 31, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates

    Factorial Mendelian randomization: using genetic variants to assess interactions.

    Get PDF
    BACKGROUND: Factorial Mendelian randomization is the use of genetic variants to answer questions about interactions. Although the approach has been used in applied investigations, little methodological advice is available on how to design or perform a factorial Mendelian randomization analysis. Previous analyses have employed a 2 × 2 approach, using dichotomized genetic scores to divide the population into four subgroups as in a factorial randomized trial. METHODS: We describe two distinct contexts for factorial Mendelian randomization: investigating interactions between risk factors, and investigating interactions between pharmacological interventions on risk factors. We propose two-stage least squares methods using all available genetic variants and their interactions as instrumental variables, and using continuous genetic scores as instrumental variables rather than dichotomized scores. We illustrate our methods using data from UK Biobank to investigate the interaction between body mass index and alcohol consumption on systolic blood pressure. RESULTS: Simulated and real data show that efficiency is maximized using the full set of interactions between genetic variants as instruments. In the applied example, between 4- and 10-fold improvement in efficiency is demonstrated over the 2 × 2 approach. Analyses using continuous genetic scores are more efficient than those using dichotomized scores. Efficiency is improved by finding genetic variants that divide the population at a natural break in the distribution of the risk factor, or else divide the population into more equal-sized groups. CONCLUSIONS: Previous factorial Mendelian randomization analyses may have been underpowered. Efficiency can be improved by using all genetic variants and their interactions as instrumental variables, rather than the 2 × 2 approach

    Modal-based estimation via heterogeneity-penalized weighting: model averaging for consistent and efficient estimation in Mendelian randomization when a plurality of candidate instruments are valid.

    Get PDF
    BACKGROUND: A robust method for Mendelian randomization does not require all genetic variants to be valid instruments to give consistent estimates of a causal parameter. Several such methods have been developed, including a mode-based estimation method giving consistent estimates if a plurality of genetic variants are valid instruments; i.e. there is no larger subset of invalid instruments estimating the same causal parameter than the subset of valid instruments. METHODS: We here develop a model-averaging method that gives consistent estimates under the same 'plurality of valid instruments' assumption. The method considers a mixture distribution of estimates derived from each subset of genetic variants. The estimates are weighted such that subsets with more genetic variants receive more weight, unless variants in the subset have heterogeneous causal estimates, in which case that subset is severely down-weighted. The mode of this mixture distribution is the causal estimate. This heterogeneity-penalized model-averaging method has several technical advantages over the previously proposed mode-based estimation method. RESULTS: The heterogeneity-penalized model-averaging method outperformed the mode-based estimation in terms of efficiency and outperformed other robust methods in terms of Type 1 error rate in an extensive simulation analysis. The proposed method suggests two distinct mechanisms by which inflammation affects coronary heart disease risk, with subsets of variants suggesting both positive and negative causal effects. CONCLUSIONS: The heterogeneity-penalized model-averaging method is an additional robust method for Mendelian randomization with excellent theoretical and practical properties, and can reveal features in the data such as the presence of multiple causal mechanisms

    Male-biased predation and its effect on paternity skew and life history in a population of common brushtail possums (Trichosurus vulpecula)

    Get PDF
    Differences in predation risk may exert strong selective pressures on life history strategies of populations. We investigated the potential for predation to shape male mating strategies in an arboreal folivore, the common brushtail possum (Trichosurus vulpecula Kerr). We predicted that possums in a tropical population exposed to high natural levels of predation would grow faster and reproduce earlier compared to those in temperate populations with lower predation. We trapped a population of possums in eucalypt woodland in northern Australia each month to measure life history traits and used microsatellites to genotype all individuals and assign paternity to all offspring. We observed very high levels of male-biased predation, with almost 60% of marked male possums being eaten by pythons, presumably as a result of their greater mobility due to mate-searching. Male reproductive success was also highly skewed, with younger, larger males fathering significantly more offspring. This result contrasts with previous studies of temperate populations experiencing low levels of predation, where older males were larger and the most reproductively successful. Our results suggest that in populations exposed to high levels of predation, male possums invest in increased growth earlier in life, in order to maximise their mating potential. This strategy is feasible because predation limits competition from older males and means that delaying reproduction carries a risk of failing to reproduce at all. Our results show that life histories are variable traits that can match regional predation environments in mammal species with widespread distributions.This work was supported by the Australian Research Council http://www.arc.gov.au/ Grant number DP0449621 to CNJ, DP0449544 to WJF. JLD was supported by an Australian National University Graduate School Scholarship

    Genetic associations of protein-coding variants in human disease

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of genetic variants linked to the risk of human disease. However, GWAS have so far remained largely underpowered in relation to identifying associations in the rare and low-frequency allelic spectrum and have lacked the resolution to trace causal mechanisms to underlying genes(1). Here we combined whole-exome sequencing in 392,814 UK Biobank participants with imputed genotypes from 260,405 FinnGen participants (653,219 total individuals) to conduct association meta-analyses for 744 disease endpoints across the protein-coding allelic frequency spectrum, bridging the gap between common and rare variant studies. We identified 975 associations, with more than one-third being previously unreported. We demonstrate population-level relevance for mutations previously ascribed to causing single-gene disorders, map GWAS associations to likely causal genes, explain disease mechanisms, and systematically relate disease associations to levels of 117 biomarkers and clinical-stage drug targets. Combining sequencing and genotyping in two population biobanks enabled us to benefit from increased power to detect and explain disease associations, validate findings through replication and propose medical actionability for rare genetic variants. Our study provides a compendium of protein-coding variant associations for future insights into disease biology and drug discovery. A meta-analysis combining whole-exome sequencing data from UK Biobank participants and imputed genotypes from FinnGen participants enables identification of genetic associations with human disease in the rare and low-frequency allelic spectrumPeer reviewe
    • …
    corecore