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Abstract

Background: Factorial Mendelian randomization is the use of genetic variants to answer

questions about interactions. Although the approach has been used in applied investigations,

little methodological advice is available on how to design or perform a factorial Mendelian ran-

domization analysis. Previous analyses have employed a 2 × 2 approach, using dichotomized

genetic scores to divide the population into 4 subgroups as in a factorial randomized trial.

Methods: We describe two distinct contexts for factorial Mendelian randomization: inves-

tigating interactions between risk factors, and investigating interactions between pharmaco-

logical interventions on risk factors. We propose two-stage least squares methods using all

available genetic variants and their interactions as instrumental variables, and using continu-

ous genetic scores as instrumental variables rather than dichotomized scores. We illustrate our

methods using data from UK Biobank to investigate the interaction between body mass index

and alcohol consumption on systolic blood pressure.

Results: Simulated and real data show that efficiency is maximized using the full set of

interactions between genetic variants as instruments. In the applied example, between four-

and ten-fold improvement in efficiency is demonstrated over the 2 × 2 approach. Analyses

using continuous genetic scores are more efficient than those using dichotomized scores. Effi-

ciency is improved by finding genetic variants that divide the population at a natural break

in the distribution of the risk factor, or else divide the population into more equal sized groups.

Conclusions: Previous factorial Mendelian randomization analyses may have been under-

powered. Efficiency can be improved by using all genetic variants and their interactions as

instrumental variables, rather than the 2× 2 approach.

Keywords: Mendelian randomization, instrumental variables, interaction, causal inference,

factorial randomized trial.

2



Key messages:

• Factorial Mendelian randomization is an extension of the Mendelian

randomization paradigm to answer questions about interactions.

• There are two contexts in which factorial Mendelian randomization can be used:

for investigating interactions between risk factors, and interactions between

pharmacological interventions on risk factors.

• While most applications of factorial Mendelian randomization have

dichotomized the population as in a 2 × 2 factorial randomized trial, this

approach is generally inefficient for detecting statistical interactions.

• In the first context, efficiency is maximized by including all genetic variants

and their cross-terms as instrumental variables for the two risk factors and

their product term.

• In the second context, efficiency is maximized by using continuous genetic scores

rather than dichotomized scores.
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Mendelian randomization is the use of genetic variants as proxies for interventions on risk

factors to answer questions of cause and effect using observational data [1, 2]. Formally,

Mendelian randomization can be viewed as instrumental variable (IV) analysis using genetic

variants as IVs [3, 4]. Factorial Mendelian randomization is the use of genetic variants to

answer questions about interactions. It does this by proposing a statistical model for the

outcome as a function of the risk factors (or their genetic predictors) and a product term.

A statistical interaction is observed when the coefficient for the product term in the model is

non-zero. A statistical interaction in the causal model for the outcome may represent a causal

interaction, meaning that the effect of one risk factor on the outcome is dependent upon the

value of the other risk factor [5, 6]. This may arise due to a functional or biological interaction,

in which there is a mechanistic connection between the two risk factors in how they influence

the outcome. However, a statistical interaction may also arise due to non-linearity in the effect

of a risk factor, or due to effect modification, in which the effect of one risk factor varies in

strata of the other. Hereafter, we take the word ‘interaction’ to mean a statistical interaction

in the causal model for the outcome, without implying a functional interaction between the

risk factors.

Factorial Mendelian randomization was proposed in the seminal paper on Mendelian randomization

by Davey Smith and Ebrahim in 2003 [1]. The term is credited by the authors to Sheila Bird.

However, the idea was not readily taken up in applied practice. The concept was raised again

by Davey Smith and Hemani in a 2014 review [7], who suggested that genetic predictors of

obesity and alcohol consumption could be used to investigate the interaction between the two

risk factors on risk of liver disease. This question was investigated for markers of liver function

using data from the Copenhagen General Population Study in 2018 [8]; no evidence for an

interaction was found.

In parallel to this, the term factorial Mendelian randomization has been used for analyses

employing genetic variants as proxies for pharmacological interventions. Ference et al. performed

factorial Mendelian randomization to compare the effect of lowering low density lipoprotein

(LDL) cholesterol levels on the risk of coronary heart disease (CHD) with two different LDL-

cholesterol lowering agents (ezetimibe and statin), and with a combination of both [9]. Genetic

variants associated with LDL-cholesterol were identified in the NPC1L1 gene (proxies for

ezetimibe), and the HMGCR gene (proxies for statins), and combined into separate gene

scores. To mimic a 2× 2 factorial randomized trial, the two gene scores were dichotomized to

create a 2× 2 contingency table. The gene scores were dichotomized at their median values so
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that the numbers of participants were balanced across the four groups. Ference has conducted

similar analyses for PCSK9 inhibitors and statins [10], and for CETP inhibitors and statins

[11]. A similar 2× 2 approach was used in each case, as well as in the analysis of obesity and

alcohol mentioned above [8].

In this paper, we consider various aspects relating to the conceptualization, design, analysis

and interpretation of a factorial Mendelian randomization investigation. First, we demonstrate

the analogy between factorial Mendelian randomization and a factorial randomized trial, we

make a connection with multivariable Mendelian randomization, and we describe two contexts

in which factorial Mendelian randomization may have utility: for investigating interactions

between risk factors, and for investigating interactions between pharmacological interventions

on risk factors. We present simulated data demonstrating that the 2× 2 approach to analysis,

while being conceptually appealing, is inefficient for detecting interactions. The same conclusion

is reached in an applied investigation considering interactions between body mass index (BMI)

and alcohol consumption on blood pressure using data from UK Biobank. Finally, we discuss

the implications of our work to applied factorial Mendelian randomization investigations.

Methods

Factorial randomized trials and Mendelian randomization

A factorial randomized trial allows for the simultaneous assessment of two or more treatments

in a single study [12]. In its simplest form, a 2× 2 factorial trial investigates the effect of two

binary treatments A and B on a binary outcome Y . Participants are randomly allocated to

one of four groups: to receive treatment A only; to receive treatment B only; to receive both

treatments A and B; or to receive neither treatment A nor B. The analogy between Mendelian

randomization and a randomized trial has been made many times [13, 14], and the analogy

between factorial Mendelian randomization and a factorial randomized trial has also been made

previously in the context of multivariable Mendelian randomization (Figure 1, adapted from

[15]).

Multivariable Mendelian randomization was motivated by the problem that some genetic

variants are associated with multiple risk factors, such that it is impossible to find genetic

variants that are specifically associated with a particular risk factor [15]. For illustration, we

assume there are two risk factors (X1 and X2), and fit a model for the outcome in terms of the
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Figure 1: Comparison of a factorial randomized clinical trial and a factorial Mendelian
randomization investigation with a 2× 2 approach (adapted from [15]).
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risk factors:

E(Y |X1, X2) = θ0 + θ1X1 + θ2X2. (1)

We assume that we have genetic variants G that satisfy the multivariable IV assumptions

for risk factors X1 and X2 [15]. Specifically:

1. Each variant is associated with at least one of the risk factors.

2. Each risk factor is associated with at least one of the genetic variants.

3. Variants are not confounded in their associations with the outcome.

4. Variants are not associated with the outcome conditional on the risk factors and confounders.

If we have at least two genetic variants that are valid multivariable IVs for X1 and X2, then

causal effects θ1 and θ2 can be estimated from the two-stage least squares method by first

regressing the risk factors on the genetic variants, and then regressing the outcome on the

fitted values of the risk factors from the first-stage regressions [16]. If summarized data on the

genetic associations with the outcome (β̂Y ) and the risk factors (β̂X1, β̂X2) are available, then

the same estimates can be obtained by weighted linear regression of the beta-coefficients with

the intercept set to zero:

E(β̂Y |β̂X1, β̂X2) = θ1β̂X1 + θ2β̂X2, (2)

where weights are the reciprocals of variances of the gene–outcome associations se(β̂Y )−2 [17].

In the language of a factorial randomized trial, this is referred to as an analysis performed

‘at the margins’ [18]. Estimates represent the average direct effect of each of the risk factors

[19]. If there is an interaction between the risk factors, then these are marginal estimates –

they are averaged over the distribution of the other risk factor.
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We can extend multivariable Mendelian randomization by adding a term to the outcome

model to estimate an interaction between the risk factors:

E(Y |X1, X2) = θ0 + θ1X1 + θ2X2 + θ12X12 (3)

where X12 is the product X1 × X2, and θ12 is the interaction effect on an additive scale. In

a factorial randomized trial, this is referred to as an analysis performed ‘inside the table’, as

in a 2 × 2 setting, the interaction can be estimated from the 2 × 2 contingency table [20]. A

factorial Mendelian randomization analysis is primarily interested in assessing the presence of,

and estimating the interaction effect θ12.

For simplicity, we initially assume that the associations of the genetic variants with the

risk factors are homogeneous in the population and do not vary with time, also that the model

relating the risk factors to the outcome is correctly specified, and the effects of the risk factors

(and their product) on the outcome are also homogeneous in the population and do not vary

with time. We return to the question of how to interpret estimates in this and in more realistic

scenarios in the Discussion.

Two contexts: interactions between risk factors and interactions

between interventions

Factorial Mendelian randomization study has been considered in two broad scenarios: a) to

estimate interaction effects between risk factors by using genetic variants as predictors of the

risk factors; and b) to identify interactions between interventions by using genetic variants as

proxies for specific treatments. In the first case, the aim is to identify an interaction in the

effect of two distinct risk factors on the outcome. In the second case, there may not even

be two distinct risk factors (as in the example of two LDL-cholesterol lowering interventions

discussed by Ference et al. [9]), and the aim is to identify an interaction in the associations

of the genetic variants with the outcome. In this case, an interaction is inferred between the

interventions for which the genetic variants are proxies. We consider these two scenarios in

turn.

Interactions between risk factors

The multivariable IV assumptions imply that there is no effect of the genetic variants on the

outcome except potentially indirectly via one or both of the risk factors. We divide the genetic
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variants into three groups: G1 contains variants that are associated with X1, G2 contains

variants that are associated with X2, and Gc contains shared variants that are associated with

X1 and X2 (Figure 2). We can now perform two-stage least squares by first regressing the risk

factors X1, X2, and the product X12 on the genetic variants, and then regressing the outcome

on the fitted values of these risk factors. This analysis treats X12 as if it is a separate risk

factor unrelated to X1 and X2 [21]. For the second-stage regression model to be identified, at

least three IVs are required, as three parameters are estimated, and all risk factors (X1, X2,

X12) must be associated with at least one IV.

Figure 2: Causal directed acyclic graph illustrating relationships between variables in a factorial
Mendelian randomization framework for two risk factors (X1 and X2). There are three sets
of genetic variants: G1 (affecting X1 only), G2 (affecting X2 only) and Gc (shared variants,
affecting X1 and X2). X12 represents the product X1×X2. The main effects of the risk factors
X1 and X2 on the outcome Y are θ1 and θ2, and the interaction effect of X1 and X2 on Y is
θ12. U1 and U2 are sets of confounders.

If we assume that the risk factors X1 and X2 are linear in the genetic variants:

E[X1|G] = α01 +
∑

α1jG1j +
∑

α1cjGcj and

E[X2|G] = α02 +
∑

α2jG2j +
∑

α2cjGcj , (4)

then an interaction between the risk factors means that the statistical model for the outcome

includes cross-terms between the genetic variants (such as G11×G21) [22]. This motivates the

use of cross-terms between the genetic variants as separate IVs.

If all the genetic variants and their cross-terms are used as instrumental variables, then

under the homogeneity assumptions, the fitted values of the risk factors and their product

term can be consistently estimated, and hence the regression model for the outcome on these
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fitted values (as in the two-stage least squares method) will be correctly specified. Thus the

homogeneity assumptions lead to consistent estimates of the parameters in equation 3.

Simulation study 1: interactions between risk factors

To investigate the performance of methods for estimating interactions between risk factors, we

conduct a simulation study. We assume there are 10 genetic variants that are associated with

X1 and 10 genetic variants that are associated with X2, and vary the number of shared variants

that are associated with both X1 and X2 from 0 (20 distinct genetic variants, each associated

with one risk factor) to 10 (all 10 genetic variants associated with both risk factors). All genetic

variants are simulated as independent (i.e. not in linkage disequilibrium). We compare four

methods:

Method 1. Full set of interactions: We consider as IVs all the genetic variants and all cross-terms –

so when there are 3 shared variants, there are 114 IVs in total: 7+7+3=17 linear terms, 3

quadratic terms (shared variants only), 3 shared × shared variant cross-terms, 42 shared

× non-shared variant cross-terms, and 49 non-shared × non-shared variant cross-terms.

Method 2. Reduced set of interactions: We consider as IVs all the genetic variants and all cross-

terms between non-shared variants – so when there are 3 shared variants, there are 17

linear terms and 49 cross-terms.

Method 3. Continuous gene scores: We construct weighted gene scores for each risk factor using

external weights, and take the two gene scores and their product as IVs.

Method 4. Dichotomized gene scores: We dichotomize both gene scores at their median, and take

the two dichotomized gene scores and their product as IVs. This is equivalent to a 2× 2

analysis.

The data-generating model for the simulation study is provided in the Supplementary

Material. Data were generated 10 000 times for each set of parameters on 10 000 individuals.

Parameters were set such that the set of genetic variants explains around 10% of the variance

in each risk factor. The effect of X1 on the outcome was θ1 = 0.3, the effect of X2 on the

outcome was θ2 = 0.2, and the interaction effect of X12 on the outcome took values θ12 = 0.1,

0.3, and 0.5.
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Simulation study 2: interactions between interventions

We performed a further simulation study to investigate methods for detecting interactions

between interventions. We assume there are 3 independent genetic variants that are proxies

for intervention A, and the same for intervention B. Fewer variants are considered here as

typically variants for such an analysis will come from a single gene region for each intervention

[9]. We compare two approaches:

1. Continuous gene scores: We construct weighted gene scores for changes in the risk factor

corresponding to each intervention using external weights, and take the two gene scores

and their product as IVs

2. Dichotomized gene scores: We dichotomize both gene scores at their median, and take

the two dichotomized gene scores and their product as IVs. This is equivalent to a 2× 2

analysis.

In each case, we regressed the outcome on the IVs, and estimated an interaction term between

the gene scores that act as proxies for the interventions. As before, the data-generating model

for the simulation study is provided in the Supplementary Material. Data were generated

10 000 times for each set of parameters on 10 000 individuals. The interaction effect took

values 0.1, 0.3, and 0.5. We varied the minor allele frequencies of the genetic variants used as

proxies for interventions A and B, drawing from a uniform distribution between 0.1 and 0.2

(uncommon), or between 0.4 and 0.5 (common), and the proportion of variance explained by

the genetic variants (3%, 5% or 7%).

Applied example: the effects of BMI and alcohol on systolic blood

pressure

Increased systolic blood pressure (SBP) is associated with a range of health conditions, including

cardiovascular disease and diabetes [23, 24]. Whilst there have been numerous studies highlighting

the adverse effects of increased BMI on SBP [25, 26], and the adverse effects of increased

alcohol consumption [27], there has been little research on the combined effect of BMI and

alcohol consumption on SBP. We illustrate factorial Mendelian randomization by performing

an analysis using individual participant data from UK Biobank to estimate the interaction

effect of BMI and alcohol consumption on SBP. UK Biobank is a prospective, population-

based cohort consisting of around 500,000 participants aged from 40 to 69 years at baseline
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living in the UK. For the analysis, we considered 291,781 unrelated participants of European

descent who passed data quality control measures and had genetic data available.

We used the 77 genome-wide significant variants from a meta-analysis by the Genetic

Investigation of ANthropometric Traits (GIANT) consortium in participants of European

ancestry to act as IVs for BMI [28]. For alcohol, we identified 10 genetic variants in the

ADH1B gene region that have been shown to be associated with alcohol consumption [29].

We performed factorial Mendelian randomization analyses using the full set of interactions,

continuous gene scores, and dichotomized gene scores. We also performed analyses separately

using the lead variant from the ADH1B gene region (rs1229984) as the sole IV for alcohol

consumption, as was done in the analysis by Carter et al. [8].

Results

Simulation study 1: interactions between risk factors

Results from the simulation study for estimating interactions between risk factors are displayed

in Table 1 (no shared variants) and Table 2 (varying the number of shared variants). All four

approaches provided unbiased estimates of the interaction effect in all scenarios, with coverage

for the 95% confidence interval close to the nominal 95% level. Power varied considerably

between the methods. With no shared variants, method 1 (full set of interactions) and method

2 (reduced set of interactions) are equivalent and gave the most efficient estimates throughout.

Method 3 (continuous gene scores) was less efficient, and method 4 (dichotomized gene scores)

was the least efficient. With shared variants, method 1 was the most efficient throughout,

and its efficiency was not strongly affected by the risk factors having genetic predictors in

common. Between methods 2 and 3, method 2 was more efficient when most of the variants

were non-shared, whereas method 3 was more efficient when most of the variants were shared.

Again, method 4 was the least efficient in all scenarios. This suggests that the 2× 2 approach

may be underpowered in practice, and instead approaches using all genetic variants and their

cross-terms should be considered.

We also varied the strength of the genetic variants due to potential concerns about weak

instruments [30]. We considered scenarios in which the genetic variants explained 1% and 5%

of variance in the risk factors. Although substantial weak instrument bias was observed for the

main effects, no bias was observed for the interaction term, even when there were 100 IVs in

the analysis and F-statistics and conditional F-statistics [31] for the product term were around
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1 (Supplementary Tables A2 and A3). Similar findings were observed in a one-sample setting

when varying the direction of confounder effects on the risk factor and outcome (results not

shown). We also performed the simulation study centering the values of the risk factors to

reduce the impact of collinearity. This changed the mean estimates of the main effects θ1 and

θ2 and improved precision for the main effect estimates, but estimates and inferences for the

interaction term θ12 were unchanged (Supplementary Table A1). These additional simulations

suggest that factorial Mendelian randomization should only be used when the interaction is the

main object of interest, and numerical estimates for the main effects from this model should

be interpreted with caution.

Simulation study 2: interactions between interventions

Results from the simulation study for estimating interactions between the gene scores that

act as proxies for the interventions are displayed in Table 3. While the numerical values of

estimates differed between the two approaches, a consistent finding was that power to detect

an interaction was greater using continuous gene scores than using dichotomized gene scores.

Varying the proportion of variance explained by the genetic variants had no discernable effect

on the power to detect an interaction. This can be seen by comparing scenarios 1, 2, and

3, and scenarios 5 and 6. However, varying the minor allele frequency had a strong effect

on power, with greater power when the minor allele frequency was close to 0.5. This can be

seen by comparing scenarios 2, 4, and 5, and scenarios 3 and 6. This suggests that ensuring

comparable size between subgroups is an important factor for efficient detection of interactions,

and can be more important than ensuring that the strongest variant is used in the analysis.

Applied example: the effects of BMI and alcohol on systolic blood

pressure

The lead variant (rs1229984) explained 0.24% of the variance in alcohol consumption, whereas

the 10 variants explained 0.28% of the variance. Although the alcohol-decreasing allele of the

rs1229984 variant is dominant, its frequency is only 2.5%. Dichotomizing participants based

on this variant led to unequal groups in the population, whereas dichotomizing based on the

10 variant score led to equal groups (Table 4). However, the difference in mean alcohol levels

between subgroups was reduced when using the 10 variant score, as most of the difference is

due to the rs1229984 variant.

Estimates of the interaction between BMI and alcohol consumption are displayed in Table 5.
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For the dichotomized gene scores, efficiency is greater when the rs1229984 variant is used,

suggesting the importance of dichotomizing the risk factor at a natural break in its distribution

(if one exists) rather than ensuring that subgroups are equal in size. However, efficiency is

strikingly improved using the full set of interactions, with the standard error decreasing over

ten-fold using the 10 variants, and by a factor of four using the rs1229984 variant, compared to

the 2× 2 analysis. All estimates are compatible with the null, suggesting a lack of interaction

in the effects of BMI and alcohol on SBP. There was no evidence of weak instrument bias,

even though up to 857 IVs were used in the analyses and F-statistics were generally low

(Supplementary Table A4).

Discussion

In this paper, we have provided a brief review of factorial Mendelian randomization, an

approach that uses genetic variants as instrumental variables to detect interactions. We

have described two broad scenarios in which factorial Mendelian randomization has been

implemented: to explore interactions between risk factors, and to explore interactions between

interventions. Although most (perhaps even all) factorial Mendelian randomization analyses

have been conducted using a 2×2 approach in which the sample is divided into 4 subgroups, we

have shown that this approach is generally inefficient, particularly for exploring interactions

between risk factors. This has been demonstrated in simulation studies, and in an applied

example in which a four- to ten-fold improvement in efficiency was observed by an analysis

using the full set of interactions between the genetic variants as IVs.

Choice of variants

Our findings suggest that factorial Mendelian randomization analyses should be conducted

using all available genetic variants that are valid instruments: that is, that satisfy the multivariable

IV assumptions. Analyses should not only include the genetic variants as main effects, but

also all relevant two-way cross-terms. A similar conclusion was made in a different context

by Bollen and Paxton [22]. If investigators want to perform a 2 × 2 analysis, this should be

done to illustrate the method rather than being the main analysis for testing the presence of

an interaction. For a 2 × 2 analysis, the primary consideration for choosing genetic variants

should be to divide the population at a natural break in the distribution of the risk factor, in

order to maximize the difference between the mean level of the risk factor in the two halves
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of the population. If there is no natural break in the distribution, then investigators should

find a division that splits the population as far as possible into equal groups. This may entail

selecting genetic variants that explain less variance in the risk factor, but have minor allele

frequency closer to 50%. There can also be substantial benefit in including multiple variants

in a single gene region in an analysis, even if these variants only explain a small additional

proportion of variance in the risk factor.

Weak instrument bias and efficiency

Conventionally, it is discouraged to use large numbers of genetic variants that are not strongly

associated with the risk factor in a Mendelian randomization analysis due to weak instrument

bias [32]. Although we did not detect any bias from weak instruments on interaction terms in

our simulations, we acknowledge that users of the method may be reluctant to use hundreds of

cross-terms as IVs. We would therefore encourage the use of continuous gene score methods as

sensitivity analyses. Such analyses estimate fewer parameters, so should be less susceptible to

bias. However, this advice is precautionary; no evidence of weak instrument bias in interaction

estimates was observed in our simulations.

Summarized data

While multivariable Mendelian randomization can be performed using summarized data that

are typically reported from genome-wide association studies by large consortia, this is not

possible for factorial Mendelian randomization. If summarized association estimates are available

on genetic associations with the product of the two risk factors, as well as associations with the

risk factors individually, then the interaction effect can in principle be estimated by weighted

linear regression of the beta-coefficients as in multivariable Mendelian randomization. However,

if association estimates are only available for genetic variants, then the regression model is

not identified asymptotically due to collinearity, and finite-sample estimates will be biased

[33]. Association estimates for some cross-terms of genetic variants are additionally required.

Hence, factorial Mendelian randomization can be performed using summarized data, but only if

bespoke summarized data are available on associations of genetic variants and their cross-terms

with the risk factors and their product.
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Interpretation of the interaction effect

If genetic variants each satisfy the assumptions of an IV, then an interaction between risk factors

has a causal interpretation. If the two risk factors are associated with the outcome then an

interaction will exist on at least one of the additive or multiplicative scales [6]. However, there

is no way of distinguishing a purely statistical interaction from a mechanistic or biological

interaction based on observational data. We therefore advise caution in the interpretation

of interaction findings, as a statistical interaction can arise due to non-linearity in the effect

of a risk factor, or because of the scale on which the outcome is measured (for example,

an interaction may occur on the original scale, but not on a log-transformed scale). When

considering an interaction between interventions, researchers can investigate whether there is

an interaction between the interventions on the risk factor(s) as well as on the outcome. This

may help reveal where any biological interaction may take place.

Causal estimates from IV analysis have a clear interpretation in two cases: under the

monotonicity assumption, and under the homogeneity assumption [34]. In a randomized

controlled trial in which random allocation is taken as the IV and the treatment is the risk

factor, monotonicity means that there are no individuals in the population (known as ‘defiers’)

who would take the treatment only if they were randomly allocated to the control group,

and not if they were allocated to the treatment group. Under monotonicity, all individuals

are either ‘always-takers’ (they would always take the treatment whether assigned to or not),

‘never-takers’ (they would never take the treatment whether assigned to or not), or ‘compliers’

(they would take the treatment if and only if assigned to do so) [35]. Under the monotonicity

assumption, the IV estimate represents the complier average causal effect – the average causal

effect amongst compliers [36]. However, these definitions suppose that the IV and risk factor

are binary. In Mendelian randomization, these variables are typically continuous, and so the

straightforward interpretation of an IV estimate as a single complier average causal effect is lost

– it instead represents a weighted average of complier average causal effects [37]. In contrast,

the IV estimate under the homogeneity assumption represents the average causal effect. In

its simplest form, the homogeneity assumption states that causal effects are identical in all

individuals in the population. Weaker versions of this assumption have been proposed.

If there is a non-zero interaction between the risk factors, then the homogeneity assumption

in the multivariable Mendelian randomization model is violated, and the IV estimate only

has a clear interpretation under the monotonicity assumption. However, the homogeneity

assumption in the factorial Mendelian randomization model may still hold, if there is homogeneity
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in the effects of the two risk factors and their product on the outcome. Hence under homogeneity,

the interaction effect has an interpretation as an average causal effect.

A further potential complication arises if genetic associations with the risk factor or outcome

vary over time. As genetic variants are assigned at conception for all individuals and tend to

influence risk factor levels throughout the life-course, Mendelian randomization estimates are

naturally interpreted as the impact of a life-long change in the trajectory of a risk factor [38].

Hence the natural interpretation of an interaction effect is that of a statistical interaction in

the relationship between the outcome and the risk factors that relates to long-term changes in

the risk factors. If genetic associations vary over time, then the interpretation of the causal

estimate from Mendelian randomization is unclear. This is true for a conventional Mendelian

randomization analysis as well as for a factorial Mendelian randomization analysis. One notable

case to consider is if the risk factors have mutual effects on each other, as in the case of a

feedback mechanism. In this situation, provided that the associations of the genetic variants

with the risk factors remain linear (which would occur if all relationships between variables are

linear), then this would mean that all genetic variants are associated with both risk factors. A

factorial Mendelian randomization analysis would still hold for the causal interaction between

the risk factors, as in the examples with shared genetic variants described earlier in the paper.

Hence feedback between the risk factors does not necessarily lead to a non-zero interaction

estimate. However, if the two variables of interest have a complex longitudinal relationship,

and in particular if there are mutual dependencies that might vary over time, then extra

caution should be taken in interpreting results from a Mendelian randomization investigation,

especially numerical estimates of causal effects. This advice is also relevant if the effects of

the risk factors on the outcome may vary over time (for example if there is a critical period

when exposure to the risk factor influences the outcome). If the associations between variables

became non-linear, then it may be worth considering using the control function approach, an

extension to the two-stage least squares method that makes stronger assumptions, but can

result in more efficient estimation [39].

Comparison with previous work

Previous work investigating interactions using IVs has been limited. A formal framework for

defining interaction effects in the context of clinical trials was proposed by Blackwell [40],

who used the language of principal stratification (compliance classes and monotonicity) to

define local average interaction effects in a similar way to how local average causal effects
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(also called complier-averaged causal effects) are defined for single risk factors [41]. However,

the principal stratification framework presupposes that risk factors are binary (or categorical)

to assign compliance classes, whereas risk factors in Mendelian randomization are typically

continuous. Additionally, the principal stratification framework presupposes a single binary

instrumental variable, whereas Mendelian randomization investigations often use multiple

genetic variants. There is therefore little practical advice in the literature on how to perform

a factorial Mendelian randomization analysis.

Limitations

There are several limitations to this work. We rely on the assumption that all genetic variants

included in our analyses are valid IVs. The IV assumptions may be violated by including

genetic variants that are associated with the outcome independently of the risk factors. This

violation would result in biased estimates, and could potentially lead to incorrect inferences on

the presence of an interaction effect. Our recommendations rely on simulated data. Different

choices for the parameters included in the simulation studies may have resulted in different

conclusions. However, our findings were robust to different choices of parameters considered

in this paper, they correspond to what we know about the theoretical properties of estimators,

and similar conclusions were observed from the applied analysis. We have only considered

interactions on an additive scale, although interactions could be considered on a multiplicative

scale by log-transforming the outcome. Finally, we have not considered the impact of model

misspecification on estimates. It would not be possible to perform simulation studies corresponding

to all possible ways that model misspecification could occur, meaning that our recommendations

cannot be proven to be optimal in all settings. We believe that we have chosen parameters

and scenarios that are relevant to modern Mendelian randomization analyses.

Conclusion

Overall, factorial Mendelian randomization is a promising technique for assessing interactions

using genetic variants as instrumental variables. Our findings suggest that current applications

of factorial Mendelian randomization based on a 2 × 2 analysis could be improved by better

selection of genetic variants, and by better choice of analysis method.

17



Funding

This work was supported by the UK Medical Research Council (MC UU 00002/7) and the

NIHR Cambridge Biomedical Research Centre. Jessica Rees is supported by the British Heart

Foundation (grant number FS/14/59/31282). Stephen Burgess is supported by a Sir Henry

Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number

204623/Z/16/Z). The views expressed are those of the authors and not necessarily those of the

NHS, the NIHR or the Department of Health and Social Care.

Conflict of Interest: none declared.

Acknowledgement: This research has been conducted using the UK Biobank Resource

under Application Number 7439.

18



References

[1] Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology

contribute to understanding environmental determinants of disease? International Journal

of Epidemiology. 2003;32(1):1–22.

[2] Burgess S, Thompson SG. Mendelian randomization: methods for using genetic variants

in causal estimation. Chapman & Hall, Boca Raton, FL; 2015.

[3] Lawlor D, Harbord R, Sterne J, Timpson N, Davey Smith G. Mendelian randomization:

using genes as instruments for making causal inferences in epidemiology. Statistics in

Medicine. 2008;27(8):1133–1163.

[4] Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to

causal inference. Statistical Methods in Medical Research. 2007;16(4):309–330.

[5] Cox DR. Interaction. International Statistical Review. 1984;52(1):1–24.

[6] VanderWeele TJ. Explanation in causal inference: methods for mediation and interaction.

Oxford University Press. New York, NY.; 2015.

[7] Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference

in epidemiological studies. Human Molecular Genetics. 2014;23(R1):R89–98.

[8] Carter AR, Borges MC, Benn M, Tybjærg-Hansen A, Davey Smith G, Nordestgaard BG,

et al. Combined association of body mass index and alcohol consumption with biomarkers

for liver injury and incidence of liver disease: a Mendelian randomization study. JAMA

Network Open. 2019;2(3):e190305.

[9] Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD. Effect of naturally random

allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease

mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian

randomization study. Journal of the American College of Cardiology. 2015;65(15):1552–

1561.

[10] Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al.

Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. New

England Journal of Medicine. 2016;375(22):2144–2153.

19



[11] Ference BA, Kastelein JJ, Ginsberg HN, Chapman MJ, Nicholls SJ, Ray KK, et al.

Association of genetic variants related to CETP inhibitors and statins with lipoprotein

levels and cardiovascular risk. JAMA. 2017;318(10):947–956.

[12] Stampfer MJ, Buring JE, Willett W, Rosner B, Eberlein K, Hennekens CH. The 2 ×

2 factorial design: Its application to a randomized trial of aspirin and U.S. physicians.

Statistics in Medicine. 1985;4(2):111–116.

[13] Hingorani A, Humphries S. Nature’s randomised trials. The Lancet. 2005;366(9501):1906–

1908.

[14] Swanson SA, Tiemeier H, Ikram MA, Hernán MA. Nature as a trialist?: Deconstructing

the analogy between Mendelian randomization and randomized trials. Epidemiology.

2017;28(5):653–659.

[15] Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of

pleiotropic genetic variants to estimate causal effects. American Journal of Epidemiology.

2015;181(4):251–260.

[16] Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examination of multivariable

Mendelian randomization in the single sample and two-sample summary data settings.

International Journal of Epidemiology. 2018;.

[17] Burgess S, Dudbridge F, Thompson SG. Re: “Multivariable Mendelian randomization:

the use of pleiotropic genetic variants to estimate causal effects”. American Journal of

Epidemiology. 2015;181(4):290–291.

[18] McAlister FA, Straus SE, Sackett DL, Altman DG. Analysis and reporting of

factorial trials: a systematic review. Journal of the American Medical Association.

2003;289(19):2545–2553.

[19] Burgess S, Thompson DJ, Rees JM, Day FR, Perry JR, Ong KK. Dissecting causal

pathways using Mendelian randomization with summarized genetic data: application to

age at menarche and risk of breast cancer. Genetics. 2017;.

[20] Dakin H, Gray A. Economic evaluation of factorial randomised controlled trials:

challenges, methods and recommendations. Statistics in Medicine. 2017;36(18):2814–2830.

[21] Wooldridge JM. Econometric analysis of cross section and panel data. Chapter 18:

Estimating average treatment effects. MIT Press; 2002.

20



[22] Bollen KA, Paxton P. Two-stage least squares estimation of interaction effects. In:

Schumacker RE, Marcoulides GA, editors. Interaction and nonlinear effects in structural

equation modeling. New Jersey: Lawrence Erlbaum Associates Publishers; 1998. p. p.125–

151.

[23] Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual

blood pressure to vascular mortality: a meta-analysis of individual data for one million

adults in 61 prospective studies. Lancet. 2002;360(9349):1903–1913.

[24] Wei GS, Coady SA, Goff DC, Brancati FL, Levy D, Selvin E, et al. Blood pressure and

the risk of developing diabetes in african americans and whites: ARIC, CARDIA, and the

Framingham Heart Study. Diabetes Care. 2011;34(4):873–879.

[25] Droyvold WB, Midthjell K, Nilsen TI, Holmen J. Change in body mass index and its

impact on blood pressure: a prospective population study. International Journal of

Obesity. 2005;29(6):650–655.

[26] Gelber RP, Gaziano JM, Manson JE, Buring JE, Sesso HD. A prospective study of

body mass index and the risk of developing hypertension in men. American Journal of

Hypertension. 2007;20(4):370–377.

[27] Roerecke M, Kaczorowski J, Tobe SW, Gmel G, Hasan OSM, Rehm J. The effect of

a reduction in alcohol consumption on blood pressure: a systematic review and meta-

analysis. Lancet Public Health. 2017;2(2):e108–e120.

[28] Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of

body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

[29] Lewis SJ, Zuccolo L, Smith GD, Macleod J, Rodriguez S, Draper ES, et al. Fetal alcohol

exposure and IQ at age 8: evidence from a population-based birth-cohort study. PLOS

One. 2012;7(11):e49407.

[30] Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies

with weak instruments. Statistics in Medicine. 2011;30(11):1312–1323.

[31] Sanderson E, Windmeijer F. A weak instrument F-test in linear IV models with multiple

endogenous variables. Journal of Econometrics. 2016;190(2):212–221.

21



[32] Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak

instruments in Mendelian randomization studies. International Journal of Epidemiology.

2011;40(3):755–764.

[33] Rees JMB. Robust methods in Mendelian randomization. Chapter 5: Extending

Mendelian randomization to a factorial framework to detect interaction effects. University

of Cambridge; 2019.

[34] Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream?

Epidemiology. 2006;17(4):360–372.

[35] Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics.

2002;58(1):21–29.

[36] Yau LHY, Little RJ. Inference for the complier-average causal effect from longitudinal data

subject to noncompliance and missing data, with application to a job training assessment

for the unemployed. Journal of the American Statistical Association. 2001;96(456):1232–

1244.

[37] Angrist JD, Graddy K, Imbens GW. The interpretation of instrumental variables

estimators in simultaneous equations models with an application to the demand for fish.

Review of Economic Studies. 2000;67(3):499–527.

[38] Labrecque JA, Swanson SA. Interpretation and potential biases of Mendelian

randomization estimates with time-varying exposures. American Journal of Epidemiology.

2019;188(1):231–238.

[39] Guo Z, Small DS. Control function instrumental variable estimation of nonlinear causal

effect models. Journal of Machine Learning Research. 2016;17(1):3448–3482.

[40] Blackwell M. Instrumental variable methods for conditional effects and causal interaction

in voter mobilization experiments. Journal of the American Statistical Association.

2017;112(518):590–599.

[41] Imbens GW, Angrist JD. Identification and estimation of local average treatment effects.

Econometrica. 1994;62(2):467–475.

22



Tables

Median SD Median SE Power (%) Coverage (%)
Methods 1 & 2 a – full set of interactions:

θ1 = 0.3 0.3013 0.0917 0.0910 90.2 95.0
θ2 = 0.2 0.2022 0.0952 0.0945 57.1 94.9
θ12 = 0.1 0.1101 0.0721 0.0718 33.7 94.6
θ1 = 0.3 0.3043 0.0918 0.0910 91.0 95.0
θ2 = 0.2 0.2034 0.0947 0.0945 57.9 95.5
θ12 = 0.3 0.3080 0.0722 0.0718 98.8 95.2
θ1 = 0.3 0.3048 0.0911 0.0909 90.7 95.2
θ2 = 0.2 0.2050 0.0944 0.0945 58.4 95.2
θ12 = 0.5 0.5073 0.0715 0.0718 100.0 95.2

Method 3 – continuous gene scores:
θ1 = 0.3 0.2993 0.1362 0.1333 61.4 95.4
θ2 = 0.2 0.1991 0.1415 0.1386 30.9 95.5
θ12 = 0.1 0.1010 0.1113 0.1091 15.4 95.5
θ1 = 0.3 0.2998 0.1359 0.1332 61.9 95.6
θ2 = 0.2 0.2019 0.1405 0.1387 31.5 95.8
θ12 = 0.3 0.3000 0.1106 0.1091 77.5 95.8
θ1 = 0.3 0.3004 0.1352 0.1331 61.5 95.4
θ2 = 0.2 0.2008 0.1409 0.1385 30.7 95.6
θ12 = 0.5 0.4995 0.1107 0.1092 98.7 95.6

Method 4 – dichotomized gene scores:
θ1 = 0.3 0.2986 0.2155 0.2072 31.0 95.7
θ2 = 0.2 0.1989 0.2246 0.2168 15.0 96.2
θ12 = 0.1 0.1022 0.1786 0.1720 8.0 95.9
θ1 = 0.3 0.3039 0.2145 0.2074 32.1 95.8
θ2 = 0.2 0.2047 0.2236 0.2164 15.2 96.2
θ12 = 0.3 0.2972 0.1777 0.1722 41.8 96.0
θ1 = 0.3 0.3010 0.2148 0.2073 31.4 96.2
θ2 = 0.2 0.2002 0.2233 0.2163 15.3 96.1
θ12 = 0.5 0.5002 0.1776 0.1718 80.7 96.1

Table 1: Simulation study results for interactions between risk factors with no shared variants:
median estimate, standard deviation (SD) of estimates, median standard error (SE), empirical
power (%) to reject null at 5% significance, and empirical coverage (%) of 95% confidence
interval.

aAs there are no shared variants, methods 1 and 2 are equivalent.
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Shared variants Total IVs Median SD Median SE Power (%) Coverage (%)
Method 1 – full set of interactions:

0 a 120 0.3080 0.0722 0.0718 98.8 95.2
1 119 0.3080 0.0723 0.0719 98.8 95.0
3 114 0.3090 0.0717 0.0716 98.9 95.3
5 105 0.3078 0.0716 0.0707 98.9 94.9
8 84 0.3073 0.0682 0.0687 99.3 95.2
10 65 0.3056 0.0670 0.0673 99.2 95.3

Method 2 – reduced set of interactions:
1 100 0.3073 0.0804 0.0794 96.7 94.9
3 66 0.3088 0.1003 0.0997 86.1 95.2
5 40 0.3056 0.1340 0.1334 63.2 95.7
8 16 0.3054 0.2520 0.2471 23.9 97.1
10 10 0.3057 0.3883 0.3891 8.7 99.3

Method 3 – continuous gene scores:
0 3 0.3000 0.1106 0.1091 77.5 95.8
1 3 0.3005 0.1111 0.1088 77.8 95.4
3 3 0.2998 0.1051 0.1048 81.0 95.6
5 3 0.3015 0.0997 0.0980 85.6 95.5
8 3 0.3003 0.0857 0.0858 93.0 95.8
10 3 0.2993 32.31 0.1711 42.7 99.2

Method 4 – dichotomized gene scores:
0 3 0.2972 0.1777 0.1722 41.8 96.0
1 3 0.3028 0.1757 0.1724 42.2 96.3
3 3 0.3002 0.1818 0.1773 39.8 96.4
5 3 0.3005 0.1948 0.1884 36.6 96.6
8 3 0.3007 0.2474 0.2340 25.7 97.2
10 3 0.2896 133.5 1.3578 0.7 100.0

Table 2: Simulation study results for interaction term between risk factors θ12 = 0.3 varying
number of shared variants: median estimate, standard deviation (SD) of estimates, median
standard error (SE), empirical power (%) to reject null at 5% significance, and empirical
coverage (%) of 95% confidence interval.

aWhen there are no shared variants, methods 1 and 2 are equivalent.
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Continuous gene scores Dichotomized gene scores
Median SD Median SE Power Median SD Median SE Power
Scenario 1: (A) Common variants, 3%; (B) Common variants, 3%

θ12=0.1 0.0583 0.0420 0.0417 29.3 0.0368 0.0423 0.0421 13.5
θ12=0.3 0.0330 0.0080 0.0078 98.7 0.1102 0.0429 0.0423 73.5
θ12=0.5 0.0224 0.0034 0.0032 100.0 0.1846 0.0428 0.0427 98.9

Scenario 2: (A) Common variants, 5%; (B) Common variants, 5%
θ12=0.1 0.0484 0.0343 0.0343 29.1 0.0372 0.0420 0.0422 13.5
θ12=0.3 0.0304 0.0074 0.0072 98.8 0.1108 0.0424 0.0423 74.3
θ12=0.5 0.0212 0.0033 0.0030 100.0 0.1851 0.0439 0.0427 99.0

Scenario 3: (A) Common variants, 3%; (B) Common variants, 7%
θ12=0.1 0.0498 0.0350 0.0352 29.2 0.0371 0.0422 0.0422 14.1
θ12=0.3 0.0305 0.0075 0.0072 99.0 0.1106 0.0426 0.0423 74.2
θ12=0.5 0.0213 0.0033 0.0030 100.0 0.1844 0.0430 0.0427 99.1

Scenario 4: (A) Uncommon variants, 5%; (B) Uncommon variants, 5%
θ12=0.1 0.0824 0.1152 0.1150 10.9 0.0168 0.0435 0.0430 7.0
θ12=0.3 0.1082 0.0519 0.0500 58.8 0.0526 0.0434 0.0430 23.3
θ12=0.5 0.0996 0.0300 0.0278 94.6 0.0879 0.0436 0.0430 53.0

Scenario 5: (A) Common variants, 5%; (B) Uncommon variants, 5%
θ12=0.1 0.0669 0.0699 0.0685 16.7 0.0246 0.0434 0.0425 9.1
θ12=0.3 0.0618 0.0211 0.0204 85.5 0.0763 0.0433 0.0426 42.8
θ12=0.5 0.0489 0.0109 0.0097 99.9 0.1279 0.0434 0.0428 84.1

Scenario 6: (A) Common variants, 3%; (B) Uncommon variants, 7%
θ12=0.1 0.0748 0.0756 0.0742 17.8 0.0259 0.0432 0.0426 9.7
θ12=0.3 0.0649 0.0221 0.0215 85.4 0.0758 0.0430 0.0426 42.9
θ12=0.5 0.0510 0.0113 0.0101 99.9 0.1271 0.0435 0.0428 83.9

Table 3: Simulation study results for interaction between interventions: median estimate,
standard deviation (SD) of estimates, median standard error (SE), and empirical power (%) to
reject null at 5% significance. The minor allele frequencies and proportion of variance explained
for variants that are proxies for interventions A and B are varied between scenarios.
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Mean (SD)
Participants (%) BMI (kg/m2) Alcohol (units/day) SBP (mmHg)

Overall 291,781 (100.0) 27.1 (4.51) 2.54 (2.58) 140.0 (19.8)

10 variants for alcohol:
Low BMI, low alcohol 73,003 (25.0) 26.6 (4.25) 2.50 (2.52) 140.6 (20.6)
High BMI, low alcohol 72,889 (25.0) 27.5 (4.65) 2.47 (2.50) 141.2 (20.6)
Low BMI, high alcohol 72,888 (25.0) 26.7 (4.30) 2.61 (2.68) 140.8 (20.7)
High BMI, high alcohol 73,001 (25.0) 27.6 (4.71) 2.59 (2.59) 141.3 (20.6)

rs1229984 variant for alcohol:
Low BMI, low alcohol 6,997 (2.4) 26.3 (4.10) 2.00 (2.04) 139.2 (20.2)
High BMI, low alcohol 6,863 (2.4) 27.3 (4.50) 1.95 (1.99) 139.7 (20.2)
Low BMI, high alcohol 138,894 (47.6) 26.7 (4.28) 2.59 (2.59) 140.8 (20.6)
High BMI, high alcohol 139,027 (47.6) 27.6 (4.69) 2.56 (2.56) 141.3 (20.6)

Table 4: Numbers (%) of participants and mean (standard deviation) of body mass index,
alcohol consumption and systolic blood pressure in 2 × 2 subgroups when either 10 genetic
variants or the rs1229984 variant used as IVs for alcohol consumption.
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Total IVs Estimate Standard error p-value
10 variants for alcohol

Method 1: full set of interactions 857 0.0023 0.0503 0.96
Method 2: continuous gene scores 3 0.0655 0.3402 0.85
Method 3: binary gene scores 3 0.1011 0.6411 0.87

rs1229984 variant for alcohol
Method 1: full set of interactions 149 -0.0170 0.1136 0.88
Method 2: continuous gene scores 3 0.1917 0.3725 0.61
Method 3: binary gene scores 3 0.1499 0.4174 0.72

Table 5: Factorial Mendelian randomization results for applied example: estimate of interaction
between BMI and alcohol consumption on systolic blood pressure. Estimates are in mmHg
units per 1 kg/m2 change in BMI and 1 unit/day change in alcohol consumption.

27



Supplementary Material

In the Supplementary Material, we provide more detail on the two simulation studies and the
applied example presented in the paper.

Simulation study 1: interactions between risk factors

The two risk factors X1 and X2 were generated for i = 1, 2, . . . , 10 000 participants from the
following data-generating model:

X1i =

J1∑
j=1

α1jG1ji +
Jc∑
j=1

α1cjGcji + U1i + ε1i and

X2i =

J2∑
j=1

α2jG2ji +
Jc∑
j=1

α2cjGcji + U2i + ε2i ,

where G1 and G2 are the genetic variants associated with X1 and X2 respectively, and Gc

are the set of shared variants that are associated with both X1 and X2 (bold font represents
vectors). The genotypes (0, 1 or 2) were generated independently from binomial distributions
Bin(2,MAFj), where MAFj represents the minor allele frequency (MAF) of the jth genetic
variant, and was drawn from a uniform distribution Unif(0.1, 0.5). α1 and α1c represent the
effects of the genetic variants G1 and Gc on X1, and α2 and α2c represent the effects of the
genetic variants G2 and Gc on X2. The genetic associations were calculated so that G1 and
Gc, and G2 and Gc, explained σ2

1 = σ2
2 = 10% of the variance in X1 and X2 respectively. To

ensure that each genetic variant explained the same amount of variation in the risk factor, we
rearranged:

var(G1j) = σ2
1 = 2× α2

1jMAF1j(1−MAF1j) and

var(G2j) = σ2
2 = 2× α2

2jMAF2j(1−MAF2j) ,

to calculate the genetic associations:

α1j =

√
σ2
1/(J1 + Jc)

2×MAF1j(1−MAF1j)
,

α1cj =

√
σ2
1/(J1 + Jc)

2×MAFcj(1−MAFcj)
,

α2j =

√
σ2
2/(J1 + Jc)

2×MAF2j(1−MAF2j)
,

α2cj =

√
σ2
2/(J1 + Jc)

2×MAFcj(1−MAFcj)
.

U1 and U2 represent the set of confounding variables of the X1−Y and X2−Y associations.
To ensure the confounders explained 25% of the variation in the risk factors, U1 and U2 were
drawn independently from a normal distribution N (0, 0.25). To fix the variances of X1 and
X2 to one, the error terms ε1 and ε2 were generated independently from a normal distribution
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with mean zero, and variance:

σ2
ε1

= 1− σ2
1 − 0.25 and σ2

ε2
= 1− σ2

2 − 0.25 .

The outcome Y was generated from:

Yi = θ0 + θ1X1i + θ2X2i + θ12X12i + 0.5U1i + 0.5U2i + εY i ,

where θ1 and θ2 represent the main effects of X1 and X2 on Y , and θ12 represents the interaction
effect of X1 and X2 on Y . X12 was generated by either: a) multiplying X1 and X2; or b)
multiplying the mean centred values of the risk factors (X1 − X̄1) and (X2 − X̄2), where
X̄1 and X̄2 are the mean values of X1 and X2. To ensure the risk factors and confounders
explained less than a third of the variance in the outcome, the error term εY was generated
from a standard normal distribution N (0, 1).

Two-stage least squares regression models were fitted to either: a) the directly generated
values of the risk factors (X1, X2, X12 = X1 ×X2); or b) the mean centred values of the risk
factors (X1 − X̄1, X2 − X̄2, X12 = (X1 − X̄1)× (X2 − X̄2)). When the risk factors were mean
centred, the model estimated the marginal effects θ1M and θ2M of X1 and X2 on Y , otherwise θ1
and θ2 were estimated. For example, when there were no shared variants Jc = 0, the marginal
effects were approximately:

θM1 = θ1 + 0.3θ12 + J2θ12

(√
0.1/J2

2× 0.3× 0.7
× 0.3× 2

)
,

θM2 = θ2 + 0.25θ12 + J1θ12

(√
0.1/J1

2× 0.3× 0.7
× 0.3× 2

)
. (A1)

The genetic variants were either treated as individual IVs or as a single instrument in
externally weighted gene scores GSX1 and GSX2 for X1 and X2. The external weights for the
gene scores were based on an independent set of 10 000 individuals, and were produced from
the same data generating model used for the main set of participants. The following four sets
of genetic variants were used as IVs in separate two-stage least squares regression models:

• Method 1 – full set of interactions: the J1, J2 and Jc genetic variants used to generate
X1 and X2, plus the unique interactions and quadratic terms of (G1 +Gc)× (G2 +Gc).

• Method 2 – reduced set of interactions: the J1, J2 and Jc genetic variants used to generate
X1 and X2, plus the interactions from the product G1 ×G2.

• Method 3 – continuous gene scores: the two weighted gene scores GSX1 and GSX2 , and
their product GSX1 ×GSX2 .

• Method 4 – dichotomized gene scores: the two dichotomized gene scores, and their
product.

Method 1 represents the oracle model as it includes all of the variables used in the data
generating model, whereas Methods 2 to 4 are misspecified and their performance should be
compared to Method 1. In Method 2, we have included a subset of the cross-terms between
the genetic variants to create a more realistic scenario where the full set of relevant IVs are
not included in the analysis. Method 3 considers the impact of including all of the genetic
variants into two separate weighted gene scores, and finally, Method 4 considers the impact of
dichotomizing the weighted gene scores.

A2



Data were generated 10 000 times with θ0 = 0.2, θ1 = 0.3, θ2 = 0.2, and θ12 = 0.1, 0.3
and 0.5. Each risk factor was associated with (J1 + Jc) = (J2 + Jc) = 10 genetic variants,
and the number of shared variants Jc was initially set to 0 to consider the scenario where
none of the genetic variants were associated with risk factors (Table 1). The analyses were
re-performed on the mean centred risk factors (Supplementary Table A1), and the number of
shared variants was set to Jc = 1, 3, 5, 8 and 10 (Table 2). The following measurements were
recorded for the estimates of θ1, θ2 and θ12: median estimate; standard deviation of estimates;
median standard error of estimates; empirical power at the 5% significance level; and empirical
coverage of the 95% confidence interval. The data were re-generated for σ2

1 = σ2
2 = 5% and

1%, for Jc = 0 (Supplementary Table A2) and Jc = 5 (Supplementary Table A3), and the
analyses were re-performed on the directly generated values of the risk factors. Estimates of
the F-statistic and conditional F-statistic for X1, X2 and X12 were recorded. The conditional
F-statistic (also known as the Sanderson–Windmeijer F-statistic [1]) represents the strength of
the IVs for the risk factors in a joint model, and is the relevant measure of instrument strength
for a multivariable Mendelian randomization analysis [2].
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Median SD Median SE Power (%) Coverage (%)
Methods 1 & 2 a – full set of interactions

θ1 = 0.3 0.4311 0.0327 0.0320 100.0 -
θ2 = 0.2 0.3370 0.0328 0.0320 100.0 -
θ12 = 0.1 0.1101 0.0721 0.0718 33.7 94.6
θ1 = 0.3 0.6679 0.0408 0.0320 100.0 -
θ2 = 0.2 0.5823 0.0413 0.0320 100.0 -
θ12 = 0.3 0.3080 0.0722 0.0718 98.8 95.2
θ1 = 0.3 0.9044 0.0527 0.0320 100.0 -
θ2 = 0.2 0.8290 0.0528 0.0320 100.0 -
θ12 = 0.5 0.5073 0.0715 0.0718 100.0 95.2

Method 3 – continuous gene scores
θ1 = 0.3 0.4178 0.0348 0.0343 100.0 -
θ2 = 0.2 0.3234 0.0349 0.0343 100.0 -
θ12 = 0.1 0.1010 0.1113 0.1091 15.4 95.5
θ1 = 0.3 0.6539 0.0424 0.0343 100.0 -
θ2 = 0.2 0.5691 0.0431 0.0343 100.0 -
θ12 = 0.3 0.3000 0.1106 0.1091 77.5 95.8
θ1 = 0.3 0.8906 0.0539 0.0343 100.0 -
θ2 = 0.2 0.8165 0.0543 0.0343 100.0 -
θ12 = 0.5 0.4995 0.1107 0.1092 98.7 95.6

Method 4 – dichotomized gene scores
θ1 = 0.3 0.4173 0.0438 0.0435 100.0 -
θ2 = 0.2 0.3236 0.0438 0.0434 100.0 -
θ12 = 0.1 0.1022 0.1786 0.1720 8.0 95.9
θ1 = 0.3 0.6538 0.0496 0.0435 100.0 -
θ2 = 0.2 0.5687 0.0506 0.0435 100.0 -
θ12 = 0.3 0.2972 0.1777 0.1722 41.8 96.0
θ1 = 0.3 0.8913 0.0597 0.0435 100.0 -
θ2 = 0.2 0.8165 0.0603 0.0435 100.0 -
θ12 = 0.5 0.5002 0.1776 0.1718 80.7 96.1

Supplementary Table A1: Simulation study results for interactions between risk factors with
no shared variants after centering the risk factors: median estimate, standard deviation (SD)
of estimates, median standard error (SE), empirical power (%) to reject null at 5% significance,
and empirical coverage (%) of 95% confidence interval. Note that centering changes the
estimands for the main effect terms, not only the estimates – hence coverage is only displayed
for the interaction term.

aAs there are no shared variants, methods 1 and 2 are equivalent.
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F-stat CF-stat Median SD Median SE Power Coverage
Variants explain 10% of the variance in risk factors:

Methods 1 & 2 a – full set of interactions
θ1 = 0.3 10.3 (0.6) 2.1 (0.3) 0.3043 0.0918 0.0910 91.0 95.0
θ2 = 0.2 10.3 (0.6) 2.1 (0.3) 0.2034 0.0947 0.0945 57.9 95.5
θ12 = 0.3 8.1 (0.6) 1.9 (0.2) 0.3080 0.0722 0.0718 98.8 95.2
Method 3 – continuous gene scores
θ1 = 0.3 364.2 (23.4) 104.5 (25.6) 0.2998 0.1359 0.1332 61.9 95.6
θ2 = 0.2 364.5 (23.2) 103.9 (25.3) 0.2019 0.1405 0.1387 31.5 95.8
θ12 = 0.3 273.7 (22.4) 97.8 (22.8) 0.3000 0.1106 0.1091 77.5 95.8
Method 4 - dichotomized gene scores
θ1 = 0.3 224.2 (17.7) 41.9 (13.4) 0.3039 0.2145 0.2074 32.1 95.8
θ2 = 0.2 224.4 (17.7) 41.7 (13.3) 0.2047 0.2236 0.2164 15.2 96.2
θ12 = 0.3 168.2 (16.3) 40.0 (12.4) 0.2972 0.1777 0.1722 41.8 96.0

Variants explain 5% of the variance in risk factors:
Methods 1 & 2 a – full set of interactions
θ1 = 0.3 5.4 (0.4) 1.5 (0.2) 0.3174 0.0931 0.0920 92.4 94.5
θ2 = 0.2 5.4 (0.4) 1.4 (0.2) 0.2166 0.0957 0.0959 62.0 94.8
θ12 = 0.3 3.9 (0.4) 1.2 (0.2) 0.3087 0.0889 0.0888 92.8 95.0
Method 3 – continuous gene scores
θ1 = 0.3 170.2 (15.5) 25.4 (11.7) 0.2988 0.2298 0.2121 29.9 96.9
θ2 = 0.2 170.1 (15.7) 25.2 (11.5) 0.1985 0.2421 0.2237 13.8 96.9
θ12 = 0.3 109.4 (13.3) 23.8 (10.4) 0.3020 0.2458 0.2276 26.7 96.9
Method 4 - dichotomized gene scores
θ1 = 0.3 107.3 (12.2) 10.7 (6.7) 0.2970 3.928 0.3367 12.6 98.9
θ2 = 0.2 106.9 (12.0) 10.6 (6.6) 0.1948 3.804 0.3551 5.4 98.7
θ12 = 0.3 68.8 (10.2) 10.2 (6.1) 0.3033 4.065 0.3654 10.8 98.8

Variants explain 1% of the variance in risk factors:
Methods 1 & 2 a – full set of interactions
θ1 = 0.3 1.8 (0.2) 1.4 (0.2) 0.3681 0.0910 0.0901 97.7 88.4
θ2 = 0.2 1.8 (0.2) 1.4 (0.2) 0.2670 0.0930 0.0930 81.4 88.6
θ12 = 0.3 1.4 (0.2) 1.0 (0.1) 0.3029 0.0971 0.0972 86.4 95.4
Method 3 – continuous gene scores
θ1 = 0.3 29.5 (6.4) 1.9 (2.9) 0.2854 29.26 0.8411 2.8 99.9
θ2 = 0.2 29.4 (6.4) 1.9 (2.8) 0.1883 31.58 0.9203 1.0 99.9
θ12 = 0.3 12.3 (4.1) 1.6 (2.1) 0.3185 52.32 1.537 0.7 100.0
Method 4 - dichotomized gene scores
θ1 = 0.3 19.1 (5.1) 1.6 (2.8) 0.2992 123.8 1.063 1.9 99.9
θ2 = 0.2 19.0 (5.0) 1.5 (2.4) 0.1930 217.5 1.163 0.6 100.0
θ12 = 0.3 8.1 (3.3) 1.2 (1.7) 0.3121 347.4 1.933 0.3 100.0

Supplementary Table A2: Simulation study results for interactions between risk factors varying
the amount of variance in the risk factors explained by the genetic variants, with no shared
variants and an interaction effect θ12 = 0.3: mean F-statistic (F-stat), mean conditional F-
statistic (CF-stat), median estimate, standard deviation (SD) of estimates, median standard
error (SE), empirical power (%) to reject null at 5% significance, and empirical coverage (%)
of 95% confidence interval.

aAs there are no shared variants, methods 1 and 2 are equivalent.
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F-stat CF-stat Median SD Median SE Power Coverage
Variants explain 10% of the variance in risk factors:

Method 1 – full set of interactions
θ1 = 0.3 11.6 (0.7) 2.5 (0.4) 0.2981 0.0933 0.0927 89.1 95.0
θ2 = 0.2 11.6 (0.7) 2.5 (0.4) 0.1988 0.0955 0.0960 55.0 95.5
θ12 = 0.3 13.4 (0.9) 2.2 (0.3) 0.3074 0.0707 0.0706 99.0 95.0
Method 2 – reduced set of interactions
θ1 = 0.3 28.8 (1.8) 2.6 (0.4) 0.2970 0.1664 0.1649 44.2 95.8
θ2 = 0.2 28.8 (1.8) 2.6 (0.4) 0.1966 0.1719 0.1715 21.0 95.9
θ12 = 0.3 32.6 (2.1) 2.3 (0.3) 0.3056 0.1337 0.1333 63.4 95.8
Method 3 – continuous gene scores
θ1 = 0.3 366.4 (23.2) 131.8 (30.9) 0.2993 0.1272 0.1244 67.0 95.4
θ2 = 0.2 366.3 (23.4) 131.0 (30.7) 0.1992 0.1314 0.1293 35.1 95.4
θ12 = 0.3 426.6 (29.1) 120.9 (26.9) 0.3008 0.1000 0.0978 84.8 95.4
Method 4 - dichotomized gene scores
θ1 = 0.3 233.5 (18.1) 35.8 (12.4) 0.2984 0.2399 0.2302 25.9 96.4
θ2 = 0.2 233.5 (18.2) 35.6 (12.3) 0.2005 0.2482 0.2396 13.0 96.4
θ12 = 0.3 284.1 (21.6) 33.8 (11.2) 0.3006 0.1950 0.1877 36.8 96.4

Variants explain 5% of the variance in risk factors:
Method 1 – full set of interactions
θ1 = 0.3 6.0 (0.5) 1.6 (0.2) 0.3052 0.0980 0.0983 87.7 95.2
θ2 = 0.2 6.0 (0.5) 1.5 (0.2) 0.2078 0.1018 0.1022 53.3 95.2
θ12 = 0.3 6.1 (0.5) 1.3 (0.2) 0.3097 0.0925 0.0919 91.3 95.3
Method 2 – reduced set of interactions
θ1 = 0.3 14.2 (1.2) 1.6 (0.3) 0.2982 0.1600 0.1588 48.4 96.3
θ2 = 0.2 14.2 (1.2) 1.6 (0.3) 0.1994 0.1665 0.1664 22.7 96.1
θ12 = 0.3 13.9 (1.3) 1.4 (0.2) 0.3087 0.1621 0.1615 49.0 96.1
Method 3 – continuous gene scores
θ1 = 0.3 171.8 (15.6) 32.9 (14.1) 0.3014 0.2078 0.1951 35.7 96.4
θ2 = 0.2 172.1 (15.4) 32.6 (13.9) 0.2041 0.2169 0.2043 16.9 96.5
θ12 = 0.3 171.7 (17.6) 30.0 (12.0) 0.2981 0.2147 0.2010 32.6 96.5
Method 4 - dichotomized gene scores
θ1 = 0.3 111.9 (12.5) 9.5 (6.4) 0.2933 0.8024 0.3732 10.2 99.1
θ2 = 0.2 112.2 (12.3) 9.4 (6.3) 0.1981 0.8127 0.3926 4.6 98.9
θ12 = 0.3 117.6 (13.5) 8.9 (5.7) 0.3066 0.8619 0.3967 9.6 99.1

Variants explain 1% of the variance in risk factors:
Method 1 – full set of interactions
θ1 = 0.3 2.0 (0.2) 1.4 (0.2) 0.3504 0.0975 0.0971 94.4 92.0
θ2 = 0.2 2.0 (0.2) 1.3 (0.2) 0.2478 0.1003 0.1002 69.6 92.2
θ12 = 0.3 1.6 (0.2) 1.0 (0.1) 0.3037 0.1051 0.1043 82.0 95.3
Method 2 – reduced set of interactions
θ1 = 0.3 3.5 (0.6) 1.4 (0.2) 0.3225 0.1398 0.1395 63.8 95.6
θ2 = 0.2 3.5 (0.5) 1.4 (0.2) 0.2243 0.1459 0.1457 34.3 95.7
θ12 = 0.3 2.6 (0.5) 1.1 (0.1) 0.3036 0.1771 0.1758 41.8 96.1
Method 3 – continuous gene scores
θ1 = 0.3 31.0 (6.6) 2.5 (3.7) 0.2912 47.33 0.7448 3.6 99.9
θ2 = 0.2 30.9 (6.5) 2.3 (3.4) 0.1939 41.15 0.8014 1.1 99.9
θ12 = 0.3 19.9 (5.4) 1.9 (2.4) 0.3030 72.69 1.315 0.6 99.9
Method 4 - dichotomized gene scores
θ1 = 0.3 20.9 (5.3) 1.6 (2.9) 0.2967 65.97 1.108 1.5 99.9
θ2 = 0.2 20.8 (5.2) 1.5 (2.5) 0.1959 54.84 1.208 0.4 100.0
θ12 = 0.3 14.1 (4.4) 1.2 (1.6) 0.3096 105.7 1.991 0.2 100.0

Supplementary Table A3: Simulation study results for interactions between risk factors varying
the amount of variance in the risk factors explained by the genetic variants, with 5 shared
variants and an interaction effect θ12 = 0.3: mean F-statistic (F-stat), mean conditional F-
statistic (CF-stat), median estimate, standard deviation (SD) of estimates, median standard
error (SE), empirical power (%) to reject null at 5% significance, and coverage (%) of 95%
confidence interval.
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Simulation study 2: interactions between interventions

Using the same notation defined in the first simulation study, the risk factor X was generated
for i = 1, 2, . . . , 10 000 participants from the following data generating model:

Xi = 0.3 +

JA∑
j=1

αAjGAji +

JB∑
j=1

αBjGBji + αAB

JA×JB∑
j=1

GABji + Ui + εXi .

We assume that the two gene regions are distinct, and the genetic variants GA and GB are
not in linkage disequilibrium. The genotypes were generated independently from binomial
distributions Bin(2,MAFj), where MAFj represents the MAF for the jth genetic variant.
MAFj was drawn from a uniform distribution U(MAFL,MAFU), where the value of MAFL
and MAFU were either taken as 0.4 and 0.5 (common variants), or 0.1 and 0.2 (uncommon
variants). We assumed that the interaction effect αAB was constant across the JA×JB product
terms for simplicity.

The approximate proportion of variance explained in X by GA (σ2
A) and GB (σ2

B) varied
between scenarios. As before, the genetic associationsαA andαB were calculated by rearranging
the formula for the variance of the genetic variants to ensure the amount of variance explained
by each variant was the same:

αAj =

√
σ2
A/JA

2×MAFAj(1−MAFAj)
and

αBj =

√
σ2
B/JB

2×MAFBj(1−MAFBj)
.

The confounders U were drawn from N (0, 0.25), and the error term εX was generated from
N (0, 0.65). The outcome Y was generated from:

Yi = θ0 + θ1Xi + Ui + εY i ,

where θ1 represents the causal effect of X on Y , and the error term εY was generated from a
standard normal distributionN (0, 1). The data was generated 10 000 times under the following
scenarios:

• Scenario 1: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.4, 0.5), σ2
A = 3% and σ2

B = 3%

• Scenario 2: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.4, 0.5), σ2
A = 5% and σ2

B = 5%

• Scenario 3: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.4, 0.5), σ2
A = 3% and σ2

B = 7%

• Scenario 4: MAFA ∼ U(0.1, 0.2), MAFB ∼ U(0.1, 0.2), σ2
A = 5% and σ2

B = 5%

• Scenario 5: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.1, 0.2), σ2
A = 5% and σ2

B = 5%

• Scenario 6: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.1, 0.2), σ2
A = 3% and σ2

B = 7%

with JA = JB = 3, θ0 = 0.2, θ1 = 0.1, and αAB = 0.1, 0.3 and 0.5. The above scenarios were
selected to consider the impact of varying the MAF and the amount of variance in the risk
factor explained by the genetic variants had on the performance of the method.

For each scenario, optimal weighted gene scores GSA and GSB were generated for each
gene region, where the external weights were produced from an independent set of 10 000
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individuals from the same data-generating model used for the main set of participants. The
two gene scores were dichotomized at their median values to create two binary variables. The
outcome was then regressed against: a) the two continuous gene scores and their product; and
b) the dichotomized gene scores and their product. The following measurements were recorded
for the estimate of the interaction effect between the gene scores on the outcome: median
estimate; standard deviation of estimates; median standard error; and empirical power at the
5% significance level.
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Applied example: the effects of BMI and alcohol on systolic blood
pressure

UK Biobank is a prospective, population-based cohort consisting of approximately 500,000
participants aged between 40 and 69 years at baseline living in the UK. Extensive baseline
characteristics were collected at recruitment, including lifestyle factors, sociodemographic information,
and physical attributes. For the analysis, we considered 367,643 unrelated participants of
European descent who passed data quality control measures and had genetic data [3].

Body mass index (BMI, kg/m2) and systolic blood pressure (SBP, mmHg) were measured
at baseline when participants attended the assessment centre. Information on baseline alcohol
consumption was obtained from a touchscreen questionnaire which included questions on
alcohol drinking status, frequency of alcohol consumption, and beverage type. The responses to
the amount of alcohol drank and beverage type were used to create a continuous variable that
represented alcohol consumption in units per day. To adjust for blood pressure medication,
15 mmHg was added to SBP for individuals who reported to be on blood pressure lowering
medication [4]. Individuals were dropped from the analysis if they had missing data on BMI,
SBP, alcohol consumption, or relevant genetic variants. The final sample size was 291,781.

We used the 77 genome-wide significant variants from a meta-analysis by the Genetic
Investigation of ANthropometric Traits (GIANT) consortium in participants of European
ancestry to act as IVs for BMI [5]. For alcohol, we identified 10 genetic variants in the ADH1B
gene region that have been shown to be associated with alcohol consumption [6]. The genetic
variants used as IVs for BMI and alcohol consumption were cross-referenced to check for any
overlap. BMI was regressed separately against each of the 10 alcohol variants, and alcohol
consumption was regressed against each of the 77 BMI variants. All models were adjusted for
gender, age, and the first ten genomic principal components.

Internally-weighted gene scores were created for BMI based on the 77 genetic variants
(GSBMI), and for alcohol consumption based on the 10 genetic variants (GSAC), and these
gene scores were dichotomized at their median values to create two binary variables. A separate
binary variable was generated using the rs1229984 variant only, where participants were either
considered to have: a) a low alcohol consumption if they were homozygous or heterozygous for
the alcohol-decreasing allele; or b) a high alcohol consumption if they were homozygous for the
alcohol-increasing allele (as in the paper by Carter et al. [7]). Using these binary variables,
the following groups of participants were created:

• Low BMI, low alcohol consumption: GSBMI ≤ med(GSBMI) and GSAC ≤ med(GSAC)
or was homozygous or heterozygous for the alcohol decreasing allele for the rs1229984
variant,

• High BMI, low alcohol consumption: GSBMI > med(GSBMI) and GSAC ≤ med(GSAC)
or was homozygous or heterozygous for the alcohol decreasing allele for the rs1229984
variant,

• Low BMI, high alcohol consumption: GSBMI ≤ med(GSBMI) and GSAC > med(GSAC)
or was homozygous for the alcohol increasing allele for the rs1229984 variant, and

• High BMI, high alcohol consumption: GSBMI ≤ med(GSBMI) and GSAC > med(GSAC)
or was homozygous for the alcohol increasing allele for the rs1229984 variant.

The above criteria created four groups of participants based on the dichotomized gene scores
for BMI and alcohol consumption, and another four groups based on the dichotomized gene
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score for BMI and the rs1229984 variant. The numbers of participants, and the mean and
standard deviation of BMI, alcohol consumption, and SBP were recorded for each group.

Two-stage least squares regression models of SBP were fitted to BMI, alcohol consumption,
and the product of BMI and alcohol consumption. The following sets of IVs were considered:

• Method 1: the 77 variants for BMI and 10 variants for alcohol consumption, plus 770
cross-terms between the two sets of variants.

• Method 2: the continuous gene scores GSBMI and GSAC , plus their product GSBMI ×
GSAC .

• Method 3: the dichotomized gene scores of GSBMI and GSAC , plus their product.

The models were refitted excluding all of the variants for alcohol consumption apart from the
lead rs1229984 variant. All models were adjusted for gender, age, and the first ten genomic
principal components. For each model, the estimate and standard error of the interaction term
was recorded with its p-value. In total, six two-stage least squares regression models were fitted
to the dataset, and all of the models were adjusted for age, gender and the first 10 genomic
principal components. The F-statistic and the Sanderson–Windmeijer conditional F-statistic
were estimated for each set of IVs with respect to BMI, alcohol consumption, and the product
of BMI and alcohol consumption (Supplementary Table A4).
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Method 1 Method 2 Method 3
F-stat CF-stat F-stat CF-stat F-stat CF-stat

10 variants for alcohol:
BMI 6.8 1.3 1662.8 21.1 1054.1 7.0
Alcohol consumption 2.4 1.1 268.0 20.9 55.6 6.9
Product term 2.4 1.1 298.6 21.0 73.2 6.9

rs1229984 for alcohol:
BMI 32.8 1.3 1654.9 17.2 1066.8 13.5
Alcohol consumption 7.7 1.2 245.1 17.1 241.6 13.4
Product term 7.9 1.2 267.7 17.1 266.5 13.4

Supplementary Table A4: F-statistics (F-stat) and conditional F-statistics (CF-stat) for
applied example.
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