6 research outputs found

    Random array of drifting acoustic receivers (RADAR'07)

    Get PDF
    Rep 04/07 - SiPLAB 15/December/2007This report describes the complete set of data acquired during the RADAR’07 sea trial, that took place aboard the NRP D. Carlos from July 9 - 15, 2007, off the west coast of Portugal, in the Set´ubal area

    Low flow controls on stream thermal dynamics

    Get PDF
    Water level fluctuations in surface water bodies, and in particular low flow drought conditions, are expected to become more frequent and more severe in the future due to the impacts of global environmental change. Variations in water level, and therefore in-channel water volume, not only have the potential to directly impact stream temperature, but also aquatic vegetation coverage which, in turn, may affect stream temperature patterns and dynamics. Manipulation experiments provide a systematic approach to investigate the multiple environmental controls on stream temperature patterns. This study aims to use temperature data loggers and fibre optic distributed temperature sensing (FO-DTS) to investigate potential drought impacts on patterns in surface water and streambed temperature as a function of change in water column depth. To quantify the joint impacts of water level and associated vegetation coverage on stream temperatures, investigations were conducted in outdoor flumes using identical pool-riffle-pool features, but with spatially variable water levels representative of different drought severity conditions. Naturally evolved vegetation growth in the flumes ranged from sparse vegetation coverage in the shallow flumes to dense colonization in the deepest. Observed surface water and streambed temperature patterns differed significantly within the range of water levels and degrees of vegetation coverage studied. Streambed temperature patterns were more pronounced in the shallowest flume, with minimum and maximum temperature values and diurnal temperature variation being more intensively affected by variation in meteorological conditions than daily average temperatures. Spatial patterns in streambed temperature correlated strongly with morphologic features in all flumes, with riffles coinciding with the highest temperatures, and pools representing areas with the lowest temperatures. In particular, the shallowest flume (comprising multiple exposed features) exhibited a maximum upstream-downstream temperature warming of 3.3 °C (T in = 10.3 °C, T out = 13.5 °C), exceeding the warming observed in the deeper flumes by ∼ 2 °C. Our study reveals significant streambed and water temperature variation caused by the combined impacts of water level and related vegetation coverage. These results highlight the importance of maintaining minimum water levels in lowland rivers during droughts for buffering the impacts of atmospheric forcing on both river and streambed water temperatures

    Woody debris is related to reach-scale hotspots of lowland stream ecosystem respiration under baseflow conditions

    Get PDF
    Stream metabolism is a fundamental, integrative indicator of aquatic ecosystem functioning. However, it is not well understood how heterogeneity in physical channel form, particularly in relation to and caused by in‐stream woody debris, regulates stream metabolism in lowland streams. We combined conservative and reactive stream tracers to investigate relationships between patterns in stream channel morphology and hydrological transport (form) and metabolic processes as characterized by ecosystem respiration (function) in a forested lowland stream at baseflow. Stream reach‐scale ecosystem respiration was related to locations (“hotspots”) with a high abundance of woody debris. In contrast, nearly all other measured hydrological and geomorphic variables previously documented or hypothesized to influence stream metabolism did not significantly explain ecosystem respiration. Our results suggest the existence of key differences in physical controls on ecosystem respiration between lowland stream systems (this study) and smaller upland streams (most previous studies) under baseflow conditions. As such, these findings have implications for reactive transport models that predict biogeochemical transformation rates from hydraulic transport parameters, for upscaling frameworks that represent biological stream processes at larger network scales, and for the effective management and restoration of aquatic ecosystems
    corecore