97 research outputs found

    Recurrent and founder mutations in the Netherlands: cardiac Troponin I (TNNI3) gene mutations as a cause of severe forms of hypertrophic and restrictive cardiomyopathy

    Get PDF
    Background About 2-7% of familial cardiomyopathy cases are caused by a mutation in the gene encoding cardiac troponin 1 (TNNI3). The related clinical phenotype is usually severe with early onset. Here we report on all currently known mutations in the Dutch population and compared these with those described in literature. Methods TheTNNI3 gene was screened for mutations in all coding exons and flanking intronic sequences in a large cohort of cardiomyopathy patients. All Dutch index cases carrying a TNNI3 mutation that are described in this study underwent extensive cardiological evaluation and were listed by their postal codes. Results In 30 families, 14 different mutations were identified. Three TNNI3 mutations were found relatively frequently in both familial and non-familial cases of hypertrophic cardiomyopathy (HCM) or restrictive cardiomyopathy (RCM). Haplotype analysis showed that p. Arg145Trp and p.Ser166Phe are founder mutations in the Netherlands, while p.Glu209Ala is not. The majority of Dutch TNNI3 mutations were associated with a HCM phenotype. Mean age at diagnosis was 36.5 years. Mutations causing RCM occurred less frequently, but were identified in very young children with a poor prognosis. Conclusion In line with previously published data, we found TNNI3 mutations to be rare and associated with early onset and severe clinical presentation

    Analysis of meiotic recombination in 22q11.2, a region that frequently undergoes deletions and duplications

    Get PDF
    BACKGROUND: The 22q11.2 deletion syndrome is the most frequent genomic disorder with an estimated frequency of 1/4000 live births. The majority of patients (90%) have the same deletion of 3 Mb (Typically Deleted Region, TDR) that results from aberrant recombination at meiosis between region specific low-copy repeats (LCRs). METHODS: As a first step towards the characterization of recombination rates and breakpoints within the 22q11.2 region we have constructed a high resolution recombination breakpoint map based on pedigree analysis and a population-based historical recombination map based on LD analysis. RESULTS: Our pedigree map allows the location of recombination breakpoints with a high resolution (potential recombination hotspots), and this approach has led to the identification of 5 breakpoint segments of 50 kb or less (8.6 kb the smallest), that coincide with historical hotspots. It has been suggested that aberrant recombination leading to deletion (and duplication) is caused by low rates of Allelic Homologous Recombination (AHR) within the affected region. However, recombination rate estimates for 22q11.2 region show that neither average recombination rates in the 22q11.2 region or within LCR22-2 (the LCR implicated in most deletions and duplications), are significantly below chromosome 22 averages. Furthermore, LCR22-2, the repeat most frequently implicated in rearrangements, is also the LCR22 with the highest levels of AHR. In addition, we find recombination events in the 22q11.2 region to cluster within families. Within this context, the same chromosome recombines twice in one family; first by AHR and in the next generation by NAHR resulting in an individual affected with the del22q11.2 syndrome. CONCLUSION: We show in the context of a first high resolution pedigree map of the 22q11.2 region that NAHR within LCR22 leading to duplications and deletions cannot be explained exclusively under a hypothesis of low AHR rates. In addition, we find that AHR recombination events cluster within families. If normal and aberrant recombination are mechanistically related, the fact that LCR22s undergo frequent AHR and that we find familial differences in recombination rates within the 22q11.2 region would have obvious health-related implications

    Whole brain radiotherapy for brain metastases from breast cancer: estimation of survival using two stratification systems

    Get PDF
    BACKGROUND: Brain metastases (BM) are the most common form of intracranial cancer. The incidence of BM seems to have increased over the past decade. Recursive partitioning analysis (RPA) of data from three Radiation Therapy Oncology Group (RTOG) trials (1200 patients) has allowed three prognostic groups to be identified. More recently a simplified stratification system that uses the evaluation of three main prognostics factors for radiosurgery in BM was developed. METHODS: To analyze the overall survival rate (OS), prognostic factors affecting outcomes and to estimate the potential improvement in OS for patients with BM from breast cancer, stratified by RPA class and brain metastases score (BS-BM). From January 1996 to December 2004, 174 medical records of patients with diagnosis of BM from breast cancer, who received WBRT were analyzed. The surgery followed by WBRT was used in 15.5% of patients and 84.5% of others patients were submitted at WBRT alone; 108 patients (62.1%) received the fractionation schedule of 30 Gy in 10 fractions. Solitary BM was present in 37.9 % of patients. The prognostic factors evaluated for OS were: age, Karnofsky Performance Status (KPS), number of lesions, localization of lesions, neurosurgery, chemotherapy, absence extracranial disease, RPA class, BS-BM and radiation doses and fractionation. RESULTS: The OS in 1, 2 and 3 years was 33.4 %, 16.7%, and 8.8 %, respectively. The RPA class analysis showed strong relation with OS (p < 0.0001). The median survival time by RPA class in months was: class I 11.7, class II 6.2 and class III 3.0. The significant prognostic factors associated with better OS were: higher KPS (p < 0.0001), neurosurgery (P < 0.0001), single metastases (p = 0.003), BS-BM (p < 0.0001), control primary tumor (p = 0.002) and absence of extracranial metastases (p = 0.001). In multivariate analysis, the factors associated positively with OS were: neurosurgery (p < 0.0001), absence of extracranial metastases (p <0.0001) and RPA class I (p < 0.0001). CONCLUSION: Our data suggests that patients with BM from breast cancer classified as RPA class I may be effectively treated with local resection followed by WBRT, mainly in those patients with single BM, higher KPS and cranial extra disease controlled. RPA class was shown to be the most reliable indicators of survival

    Screening mutations in myosin binding protein C3 gene in a cohort of patients with Hypertrophic Cardiomyopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MyBPC3 </it>mutations are amongst the most frequent causes of hypertrophic cardiomyopathy, however, its prevalence varies between populations. They have been associated with mild and late onset disease expression. Our objectives were to establish the prevalence of <it>MyBPC3 </it>mutations and determine their associated clinical characteristics in our patients.</p> <p>Methods</p> <p>Screening by Single Strand Conformation Polymorphisms (SSCP) and sequencing of the fragments with abnormal motility of the <it>MyBPC3 </it>gene in 130 unrelated consecutive HCM index cases. Genotype-Phenotype correlation studies were done in positive families.</p> <p>Results</p> <p>16 mutations were found in 20 index cases (15%): 5 novel [D75N, V471E, Q327fs, IVS6+5G>A (homozygous), and IVS11-9G>A] and 11 previously described [A216T, R495W, R502Q (2 families), E542Q (3 families), T957S, R1022P (2 families), E1179K, K504del, K600fs, P955fs and IVS29+5G>A]. Maximum wall thickness and age at time of diagnosis were similar to patients with <it>MYH7 </it>mutations [25(7) vs. 27(8), p = 0.16], [46(16) vs. 44(19), p = 0.9].</p> <p>Conclusions</p> <p>Mutations in <it>MyBPC3 </it>are present in 15% of our hypertrophic cardiomyopathy families. Severe hypertrophy and early expression are compatible with the presence of <it>MyBPC3 </it>mutations. The genetic diagnosis not only allows avoiding clinical follow up of non carriers but it opens new possibilities that includes: to take preventive clinical decisions in mutation carriers than have not developed the disease yet, the establishment of genotype-phenotype relationship, and to establish a genetic diagnosis routine in patients with familial HCM.</p

    Maternally derived 15q11.2-q13.1 duplication and H19-DMR hypomethylation in a patient with Silver?Russell syndrome

    Get PDF
    Silver?Russell syndrome (SRS) is a congenital developmental disorder characterized by intrauterine and postnatal growth failure, craniofacial features (including a triangular shaped face and broad forehead), relative macrocephaly, protruding forehead, body asymmetry and feeding difficulties. Hypomethylation of the H19 differentially methylated region (DMR) on chromosome 11p15.5 is the most common cause of the SRS phenotype. We report the first SRS patient with hypomethylation of the H19-DMR and maternally derived 15q11.2-q13.1 duplication. Although her clinical manifestations overlapped with those of previously reported SRS cases, the patient’s intellectual disability and facial dysmorphic features were inconsistent with the SRS phenotype. Methylation analyses, array comparative genomic hybridization, and a FISH analysis revealed the hypomethylation of the H19-DMR and a maternally derived interstitial 5.7?Mb duplication at 15q11.2-q13.1 encompassing the Prader?Willi/Angelman critical region in the patient. On the basis of the genetic and clinical findings in the present and previously reported cases, it is unlikely that the 15q duplication in the patient led to the development of hypomethylation of the H19-DMR and it is reasonable to consider that the characteristic phenotype in the patient was caused by the coexistence of the two (epi)genetic conditions. Further studies are needed to clarify the mechanisms leading to methylation aberrations in SRS

    The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics

    Get PDF
    Cardiomyopathies, arrhythmic syndromes, aortopathies, and other cardiovascular diseases with Mendelian inheritance are relatively frequent conditions for which genetic testing is recommended in various guidelines.1,2 The most widely recognized indication for genetic testing in patients with these conditions is to identify a causative mutation and subsequently provide pre-symptomatic or predictive testing of relatives who are at risk of developing the same disease at a later stage. This process of cascade screening of family members ensures adequate clinical surveillance of mutation carriers and allows non-carriers to be discharged from clinical follow-up. A number of studies have reported a greater cost-effectiveness combining molecular screening with clinical screening compared with isolated clinical investigations.3 Previously, genetic testing was based on conventional techniques like Sanger sequencing analysing genes one by one, but recent advances in DNA sequencing technologies have made it possible to investigate large numbers of disease genes simultaneously, making mutation analysis much faster and cheaper. These new methods are known as next-generation sequencing (NGS) and represent a major advance in the ability to identify causative mutations in families affected by genetic diseases (see Supplementary material online, Figure S1).4,5 However, analysis of large numbers of genes may identify a number of sequence variants of uncertain clinical significance (VUS). As a result, cardiologists and clinical geneticists who counsel and manage families with inherited cardiovascular disorders are facing a major challenge in determining the clinical relevance of NGS results.6,7 This paper gives a brief overview of the principles of NGS, discusses the general strategies for the interpretation of sequencing results, and reviews the implications of NGS for cardio-genetic services. In addition, issues related to genetic counselling and ethical considerations are discussed. A summary of viewpoints is given in Table 1

    At Least Ten Genes Define the Imprinted Dlk1-Dio3 Cluster on Mouse Chromosome 12qF1

    Get PDF
    Background: Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/ Angelman syndromes and cancer. Methodology/Principal Findings: To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Conclusions/Significance: Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/‘‘Rian’’

    The fate of children with microdeletion 22q11.2 syndrome and congenital heart defect: clinical course and cardiac outcome

    Full text link
    BACKGROUND: This study aimed to evaluate the cardiac outcome for children with microdeletion 22q11.2 and congenital heart defect (CHD). METHODS: A total of 49 consecutive children with 22q11.2 and CHD were retrospectively identified. The CHD consisted of tetralogy of Fallot and variances (n = 22), interrupted aortic arch (n = 10), ventricular septal defect (n = 8), truncus arteriosus (n = 6), and double aortic arch (n = 1). Extracardiac anomalies were present in 46 of 47 children. RESULTS: The median follow-up time was 8.5 years (range, 3 months to 23.5 years). Cardiac surgical repair was performed for 35 children, whereas 5 had palliative surgery, and 9 never underwent cardiac surgery. The median age at repair was 7.5 months (range, 2 days to 5 years). The mean hospital stay was 35 days (range, 7-204 days), and the intensive care unit stay was 15 days (range, 3-194 days). Significant postoperative complications occurred for 26 children (74%), and surgery for extracardiac malformations was required for 21 patients (43%). The overall mortality rate was 22% (11/49), with 1-year survival for 86% and 5-year survival for 80% of the patients. A total of 27 cardiac reinterventions were performed for 16 patients (46%) including 15 reoperations and 12 interventional catheterizations. Residual cardiac findings were present in 25 patients (71%) at the end of the follow-up period. CONCLUSIONS: Children with microdeletion 22q11.2 and CHD are at high risk for mortality and morbidity, as determined by both the severity of the cardiac lesions and the extracardiac anomalies associated with the microdeletion
    corecore