56 research outputs found

    Interdisciplinary aspects of facial pain

    Get PDF
    Craniomandibular dysfunction is not independent-term nosology, but rather reflects the different etiology and pathophysiology of the disorder primarily neurological, neyrostomatologicheskie, neuroorthopedic, rheumatologic, otorhinolaryngological, ophthalmological and other violations.Краниомандибулярная дисфункция является не самостоятельной нозологией, а скорее отражает различные по этиологии и патофизиологии расстройства, прежде всего неврологические, нейростоматологические, нейроортопедические, ревматологические, оториноларингологические, офтальмологические и другие нарушения

    Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS) loci in the genomes of several ecologically diverse <it>Pantoea </it>and <it>Erwinia </it>species and detected the presence of putative effector islands associated with the <it>hcp </it>and <it>vgrG </it>genes.</p> <p>Results</p> <p>Between two and four T6SS loci occur among the <it>Pantoea </it>and <it>Erwinia </it>species. While two of the loci (T6SS-1 and T6SS-2) are well conserved among the various strains, the third (T6SS-3) locus is not universally distributed. Additional orthologous loci are present in <it>Pantoea </it>sp. aB-valens and <it>Erwinia billingiae </it>Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the <it>vgrG </it>and <it>hcp</it>, and <it>vgrG </it>genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the <it>hcp </it>and <it>vgrG </it>islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins.</p> <p>Conclusions</p> <p>Extensive diversity was observed in the number and content of the T6SS loci among the <it>Pantoea </it>and <it>Erwinia </it>species. Genomic islands could be observed within some of T6SS loci, which are associated with the <it>hcp </it>and <it>vgrG </it>proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.</p

    A proposed new bacteriophage subfamily: “Jerseyvirinae”

    Get PDF
    © 2015, Springer-Verlag Wien. Based on morphology and comparative nucleotide and protein sequence analysis, a new subfamily of the family Siphoviridae is proposed, named “Jerseyvirinae” and consisting of three genera, “Jerseylikevirus”, “Sp3unalikevirus” and “K1glikevirus”. To date, this subfamily consists of 18 phages for which the genomes have been sequenced. Salmonella phages Jersey, vB_SenS_AG11, vB_SenS-Ent1, vB_SenS-Ent2, vB_SenS-Ent3, FSL SP-101, SETP3, SETP7, SETP13, SE2, SS3e and wksl3 form the proposed genus “Jerseylikevirus”. The proposed genus “K1glikevirus” consists of Escherichia phages K1G, K1H, K1ind1, K1ind2 and K1ind3. The proposed genus “Sp3unalikevirus” contains one member so far. Jersey-like phages appear to be widely distributed, as the above phages were isolated in the UK, Canada, the USA and South Korea between 1970 and the present day. The distinguishing features of this subfamily include a distinct siphovirus morphotype, genomes of 40.7-43.6kb (49.6-51.4mol% G+C), a syntenic genome organisation, and a high degree of nucleotide sequence identity and shared proteins. All known members of the proposed subfamily are strictly lytic

    Clamp loader ATPases and the evolution of DNA replication machinery

    Get PDF
    Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life

    Crystalline GaSb-core optical fibers with room-temperature photoluminescence

    No full text
    Glass-clad, GaSb-core fibers were drawn and subsequently laser annealed. The as-drawn fibers were found to be polycrystalline, possess Sb inclusions, and have oxide contamination concentrations of less than 3 at%. Melting and resolidifying regions in the cores using 10.6 µm CO2 laser radiation yielded single crystalline zones with enhanced photoluminescence (PL), including the first observation of strong room temperature PL from a crystalline core fiber. Annealed fibers show low values of tensile strain and a bandgap close to that of bulk GaSb
    corecore