43 research outputs found

    Relief of chronic pain associated with increase in midline frontal theta power

    Get PDF
    INTRODUCTION: There is a need to identify objective cortical electrophysiological correlates for pain relief that could potentially contribute to a better pain management. However, the field of developing brain biomarkers for pain relief is still largely underexplored. OBJECTIVES: The objective of this study was to investigate cortical electrophysiological correlates associated with relief from chronic pain. Those features of pain relief could serve as potential targets for novel therapeutic interventions to treat pain. METHODS: In 12 patients with chronic pain in the upper or lower extremity undergoing a clinically indicated nerve block procedure, brain activity was recorded by means of electroencephalogram before and 30 minutes after the nerve block procedure. To determine the specific cortical electrophysiological correlates of relief from chronic pain, 12 healthy participants undergoing cold-pressor test to induce experimental acute pain were used as a control group. The data were analyzed to characterize power spectral density patterns of pain relief and identify their source generators at cortical level. RESULTS: Chronic pain relief was associated with significant delta, theta, and alpha power increase at the frontal area. However, only midfrontal theta power increase showed significant positive correlation with magnitude of reduction in pain intensity. The sources of theta power rebound were located in the left dorsolateral prefrontal cortex (DLPFC) and midline frontal cortex. Furthermore, theta power increase in the midline frontal cortex was significantly higher with chronic vs acute pain relief. CONCLUSION: These findings may provide basis for targeting chronic pain relief via modulation of the midline frontal theta oscillations

    Dynamic Distribution of Histone H4 Arginine 3 Methylation Marks in the Developing Murine Cortex

    Get PDF
    Epigenetic modifications regulate key transitions in cell fate during development of the central nervous system (CNS). During cortical development the initial population of proliferative neuroepithelial precursor cells give rise to neurons and then glia in a strict temporal order. Neurogenesis and gliogenesis are accompanied by a switch from symmetric to asymmetric divisions of the neural precursor cells generating another precursor and a differentiated progeny. To investigate whether specific post-translational histone modifications define specific stages of neural precursor differentiation during cortical development I focussed on the appearance of two different types of histone arginine methylation, the dimethyl symmetric H4R3 (H4R3me2s) and dimethyl asymmetric H4R3 (H4R3me2a) in the developing mouse cortex.An immunohistochemical study of the developing cortex at different developmental stages was performed to detect the distribution of H4R3me2s and H4R3me2a modifications. I analysed the distribution of these modifications in: 1) undifferentiated neural precursors, 2) post-mitotic neurons and 3) developing oligodendrocyte precursors (OLPs) using lineage-specific and histone modification-specific antibodies to co-label the cells. I found that the proliferative neuroepithelium during the stage of mainly symmetric expansive divisions is characterised by the prevalence of H4R3me2s modification and almost no detectable H4R3me2a modification. However, at a later stage, when the cortical layers with post-mitotic neurons have begun forming, both H4R3me2a and H4R3me2s modifications are detected in the post-mitotic neurons and in the developing OLPs.I propose that the H4R3me2s modification forms part of the "histone code" of undifferentiated neural precursors. The later appearance of the H4R3me2a modifications specifies the onset of neurogenesis and gliogenesis and the commitment of the NSCs to differentiate. Thus, the sequential appearance of the two different H4R3 methylation marks may define a particular cellular state of the NSCs during their development and differentiation demonstrating the role of histone arginine methylation in cortical development

    Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity

    Get PDF
    AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosinebinding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237. Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation

    Predicting Diabetic Nephropathy Using a Multifactorial Genetic Model

    Get PDF
    AIMS: The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can improve prediction. METHODS: Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or Type 2 diabetes of >10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs nominally associated with nephropathy in our population. The model was validated by using random "training" (75%) and "test" (25%) subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi patients. RESULTS: The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5) and 5 conventional variables (age, sex, ethnicity, diabetes type and duration), and allowing for all possible two-way interactions, predicted nephropathy in our initial population (C-statistic = 0.672) better than a model based on conventional variables only (C = 0.569). In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576), it remained highly associated with diabetic nephropathy (χ(2) = 17.79, p<0.0001). In the replication dataset, the model based on conventional variables only was not associated with nephropathy (χ(2) = 3.2673, p = 0.07). CONCLUSION: In this proof-of-concept study, we developed and validated a genetic model in the Ashkenazi/Sephardic population predicting nephropathy more effectively than a similarly constructed non-genetic model. Further testing is required to determine if this modeling approach, using an optimally selected panel of genetic markers, can provide clinically useful prediction and if generic models can be developed for use across multiple ethnic groups or if population-specific models are required

    The acute impact of a hematopoietic allograft on lung function and inflammation: a prospective observational study

    Get PDF
    Background: No studies have investigated the immediate impact of receiving an allogeneic hematopoietic stem cell transplant (HSCT) on pulmonary inflammation or lung function. Methods: Using a prospective study design, we quantified the changes in these outcome measures in eligible adult individuals in the first six months after receiving an allogeneic hematopoietic stem cell transplant. Results: Between January 2007 and December 2008, 72 patients were eligible to participate in the cohort, and of these 68 (94%) were included in the study. Compared to baseline, pulmonary inflammation as measured by exhaled nitric oxide increased after receiving a HSCT with the largest increment seen at three months (+6.0ppb, 95%CI: +0.4 to +11.5), and this was sustained at six months. Percent predicted forced expiratory volume in one second decreased over the same period, with the largest decrease observed at six weeks (−5.9%, 95% CI: -8.9 to −2.9), and this was also sustained over a six month period. Similar associations were observed for FVC. A larger increase in exhaled nitric oxide from baseline at six weeks and three months may be associated with decreased mortality (p=0.06, p=0.04 respectively). Conclusion: Our data demonstrate that recipients of an allogeneic HSCT experience an increase in biomarkers of pulmonary inflammation and a decrease in lung function in the first six months after the procedure. If independently validated in other study populations, these observations could have potential as a prognostic biomarker for this patient group

    Pitch and Rhythm Perception and Verbal Short-Term Memory in Acute Traumatic Brain Injury

    Get PDF
    Music perception deficits are common following acquired brain injury due to stroke, epilepsy surgeries, and aneurysmal clipping. Few studies have examined these deficits following traumatic brain injury (TBI), resulting in an under-diagnosis in this population. We aimed to (1) compare TBI patients to controls on pitch and rhythm perception during the acute phase; (2) determine whether pitch and rhythm perception disorders co-occur; (3) examine lateralization of injury in the context of pitch and rhythm perception; and (4) determine the relationship between verbal short-term memory (STM) and pitch and rhythm perception. Music perception was examined using the Scale and Rhythm tests of the Montreal Battery of Evaluation of Amusia, in association with CT scans to identify lesion laterality. Verbal short-term memory was examined using Digit Span Forward. TBI patients had greater impairment than controls, with 43% demonstrating deficits in pitch perception, and 40% in rhythm perception. Deficits were greater with right hemisphere damage than left. Pitch and rhythm deficits co-occurred 31% of the time, suggesting partly dissociable networks. There was a dissociation between performance on verbal STM and pitch and rhythm perception 39 to 42% of the time (respectively), with most individuals (92%) demonstrating intact verbal STM, with impaired pitch or rhythm perception. The clinical implications of music perception deficits following TBI are discussed
    corecore