5 research outputs found

    Ring vaccination with rVSV-ZEBOV under expanded access in response to an outbreak of Ebola virus disease in Guinea, 2016: an operational and vaccine safety report.

    Get PDF
    BACKGROUND: In March, 2016, a flare-up of Ebola virus disease was reported in Guinea, and in response ring vaccination with the unlicensed rVSV-ZEBOV vaccine was introduced under expanded access, the first time that an Ebola vaccine has been used in an outbreak setting outside a clinical trial. Here we describe the safety of rVSV-ZEBOV candidate vaccine and operational feasibility of ring vaccination as a reactive strategy in a resource-limited rural setting. METHODS: Approval for expanded access and compassionate use was rapidly sought and obtained from relevant authorities. Vaccination teams and frozen vaccine were flown to the outbreak settings. Rings of contacts and contacts of contacts were defined and eligible individuals, who had given informed consent, were vaccinated and followed up for 21 days under good clinical practice conditions. FINDINGS: Between March 17 and April 21, 2016, 1510 individuals were vaccinated in four rings in Guinea, including 303 individuals aged between 6 years and 17 years and 307 front-line workers. It took 10 days to vaccinate the first participant following the confirmation of the first case of Ebola virus disease. No secondary cases of Ebola virus disease occurred among the vaccinees. Adverse events following vaccination were reported in 47 (17%) 6-17 year olds (all mild) and 412 (36%) adults (individuals older than 18 years; 98% were mild). Children reported fewer arthralgia events than adults (one [<1%] of 303 children vs 81 [7%] of 1207 adults). No severe vaccine-related adverse events were reported. INTERPRETATION: The results show that a ring vaccination strategy can be rapidly and safely implemented at scale in response to Ebola virus disease outbreaks in rural settings. FUNDING: WHO, Gavi, and the World Food Programme

    Quantifying the value of viral genomics when inferring who infected whom in the 2014–16 Ebola virus outbreak in Guinea

    Get PDF
    Transmission trees can be established through detailed contact histories, statistical or phylogenetic inference, or a combination of methods. Each approach has its limitations, and the extent to which they succeed in revealing a 'true' transmission history remains unclear. In this study, we compared the transmission trees obtained through contact tracing investigations and various inference methods to identify the contribution and value of each approach. We studied eighty-six sequenced cases reported in Guinea between March and November 2015. Contact tracing investigations classified these cases into eight independent transmission chains. We inferred the transmission history from the genetic sequences of the cases (phylogenetic approach), their onset date (epidemiological approach), and a combination of both (combined approach). The inferred transmission trees were then compared to those from the contact tracing investigations. Inference methods using individual data sources (i.e. the phylogenetic analysis and the epidemiological approach) were insufficiently informative to accurately reconstruct the transmission trees and the direction of transmission. The combined approach was able to identify a reduced pool of infectors for each case and highlight likely connections among chains classified as independent by the contact tracing investigations. Overall, the transmissions identified by the contact tracing investigations agreed with the evolutionary history of the viral genomes, even though some cases appeared to be misclassified. Therefore, collecting genetic sequences during outbreak is key to supplement the information contained in contact tracing investigations. Although none of the methods we used could identify one unique infector per case, the combined approach highlighted the added value of mixing epidemiological and genetic information to reconstruct who infected whom

    Determinants of Transmission Risk During the Late Stage of the West African Ebola Epidemic.

    Get PDF
    Understanding risk factors for Ebola transmission is key for effective prediction and design of interventions. We used data on 860 cases in 129 chains of transmission from the latter half of the 2013-2016 Ebola epidemic in Guinea. Using negative binomial regression, we determined characteristics associated with the number of secondary cases resulting from each infected individual. We found that attending an Ebola treatment unit was associated with a 38% decrease in secondary cases (incidence rate ratio (IRR) = 0.62, 95% confidence interval (CI): 0.38, 0.99) among individuals that did not survive. Unsafe burial was associated with a higher number of secondary cases (IRR = 1.82, 95% CI: 1.10, 3.02). The average number of secondary cases was higher for the first generation of a transmission chain (mean = 1.77) compared with subsequent generations (mean = 0.70). Children were least likely to transmit (IRR = 0.35, 95% CI: 0.21, 0.57) compared with adults, whereas older adults were associated with higher numbers of secondary cases. Men were less likely to transmit than women (IRR = 0.71, 95% CI: 0.55, 0.93). This detailed surveillance data set provided an invaluable insight into transmission routes and risks. Our analysis highlights the key role that age, receiving treatment, and safe burial played in the spread of EVD

    A Rapid Assessment of Health System Preparedness and Response to the COVID-19 Pandemic in Guinea

    No full text
    International audienceEpidemic-prone diseases have high adverse impacts and pose important threats to global health security. This study aimed to assess levels of health facility preparedness and response to the COVID-19 pandemic in Guinea. This was a cross-sectional study in public and private health facilities/services across 13 Guinean health districts. Managers and healthcare workers (HCWs) from departments in each facility/service were interviewed. Descriptive statistics and comparisons were presented using Pearson's Chi-Squared Test or Fischer exact test. Totally, 197 managers and 1020 HCWs participated in the study. Guidance documents and dedicated spaces for management/isolation of suspected COVID-19 cases were available only in 29% and 26% of facilities, respectively. Capacities to collect (9%) and safely transport (14%) samples were low. Intensive care units (5%), dedicated patient beds (3%), oxygenators (2%), and respirators (0.6%) were almost lacking. While 36% of facilities/services had received infection prevention and control supplies, only 20% had supplies sufficient for 30 days. Moreover, only 9% of HCWs had received formal training on COVID-19. The main sources of information for HCWs were the media (90%) and the internet (58%). Only 30% of HCWs had received personal protective equipment, more in the public sector (p<0.001) and in Conakry (p=0.022). This study showed low levels of preparedness of health facilities/services in Guinea and highlighted a lack of confidence among HCWs who felt unsafe at their workplace. Better governance to improve and maintain the capacity of the Guinean health system to respond to current and future epidemics is needed
    corecore